您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于磁性纳米材料富集-氢化物发生-原子荧光光谱法测定砷的方法研究

基于磁性纳米材料富集-氢化物发生-原子荧光光谱法测定砷的方法研究

5296    2018-09-27

免费

全文售价

作者:袁欣1, 苟在旭2, 郭琦2, 周玉2, 贺字英2, 方玉宇2, 江雪2, 黄科2

作者单位:1. 成都中医药大学药学院, 四川 成都 611137;
2. 四川师范大学化学与材料科学学院, 四川 成都 610068


关键词:四氧化三铁磁性纳米材料;氢化物发生;砷;原子荧光;富集


摘要:

该文提出一种基于四氧化三铁磁性纳米材料(Fe3O4 MNPs)分离富集细胞及环境样品中砷的新方法。Fe3O4 MNPs可快速吸附细胞溶液中的无机砷,并利用其磁性可在磁场作用下与基体溶液直接分离,从而实现对砷的高效富集。向分离后的Fe3O4 MNPs中加入少量盐酸使其溶解,即可通过氢化物发生原子荧光光谱法准确测定砷含量。该方法的检出限为0.004 ng/mL,相当于未富集时的1/50。方法的相对标准偏差(RSD)小于2.0%(n=7),表明其具有较高的稳定性。该方法具有操作简单、抗干扰能力强、灵敏度高、绿色环保等优点。可成功用于细胞样品中砷的含量测定,分析结果令人满意。


Study on determination of arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4 magnetic nanoparticles for preconcentration

YUAN Xin1, GOU Zaixu2, GUO Qi2, ZHOU Yu2, HE Ziying2, FANG Yuyu2, JIANG Xue2, HUANG Ke2

1. College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
2. College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China

Abstract: In this work, a novel method was developed by using Fe3O4 magnetic nanoparticles (MNPs) for effective adsorption of inorganic arsenic (As(Ⅲ)) in environmental samples and cells for preconcentration. The adsorbed inorganic arsenic by Fe3O4 MNPs in cells was easily separated by a magnet from the sample matrix. And the Fe3O4 MNPs was completely dissolved in hydrochloric acid prior to the determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry (HG-AFS). The limit of detection (LOD) was 0.004 ng/mL for As(Ⅲ), which was improved by 50-fold compared to that of conventional method without preconcentration. The relative standard deviation (RSD) was less than 2.0% (n=7),with high stability. The method has the advantages of simple operation, strong anti-interference ability, high sensitivity and green environmental protection, which can be used successfully for the determination of arsenic in cell samples with satisfactory results

Keywords: Fe3O4 MNPs;hydride generation;As(Ⅲ);atomic fluorescence spectrometry;preconcentration

2018, 44(9): 51-56  收稿日期: 2018-02-07;收到修改稿日期: 2018-03-16

基金项目: 国家自然科学基金(81603291);成都中医药大学校基金(ZRQN1651)

作者简介: 袁欣(1988-),女,四川成都市人,讲师,博士,主要从事光谱分析方面研究

参考文献

[1] SANCHEZ T R, PERZANOWSKI M, GRAZIANO J H. Inorganic arsenic and respiratory health, from early life exposure to sex-specific effects:A systematic review[J]. Environmental Research, 2016, 147:537-555
[2] MCGUIGAN C F, HAMULA C L A, HUANG S, et al. A review on arsenic concentrations in Canadian drinking water[J]. Environmental Reviews, 2010, 18:291-307
[3] 陈倩,苏建强,叶军,等. 微生物砷还原机制的研究进展[J]. 生态毒理学报, 2011, 3(6):225-233
[4] HETTICK B E, CANAS-CARRELL J E, FRENCH A D, et al. Arsenic:A Review of the Element's Toxicity, Plant Interactions, and Potential Methods of Remediation[J]. Journal of Agricultural and Food Chemistry, 2015, 63(32):7097-7107
[5] ZHOU Z D, LUO H, HOU X D, et al. Determination of arsenic in dinosaur skeleton fossils by hydride generation atomic fluorescence spectrometry[J]. Microchemical Journal, 2004, 77(1):29-35
[6] LUO H, WANG X, DAI R, et al. Simultaneous determination of arsenic and cadmium by hydride generation atomic fluorescence spectrometry using magnetic zero-valent iron nanoparticles for separation and pre-concentration[J]. Microchemical Journal, 2017, 133:518-523
[7] JIANG H M, HU B, CHEN B B, et al. Hollow fiber liquid phase microextraction combined with electrothermal atomic absorption spectrometry for the speciation of arsenic (Ⅲ) and arsenic (V) in fresh waters and human hair extracts[J]. Analytica Chimica Acta, 2009, 634(1):15-21
[8] ZHU Z L, HE H Y, HE D, et al. Evaluation of a new dielectric barrier discharge excitation source for the determination of arsenic with atomic emission spectrometry[J]. Talanta, 2014, 122:234-239
[9] ZOU Z R, WANG S L, JIA J, et al. Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration[J]. Microchemical Journal, 2016, 124:578-583
[10] TANG S, ZHANG H, LEE H K. Advances in Sample Extraction[J]. Analytical Chemistry, 2016, 88(1):228-249
[11] PYRZYNSKA K, KUBIAK A, WYSOCKA I. Application of solid phase extraction procedures for rare earth elements determination in environmental samples[J]. Talanta, 2016, 154:15-22
[12] ANTHEMIDIS A N, IOANNOU K I G. Recent developments in homogeneous and dispersive liquid-liquid extraction for inorganic elements determination. A review[J]. Talanta, 2009, 80(2):413-421
[13] HAMSIPUR M, FATTAHI N, ASSADI Y, et al. Speciation of As(Ⅲ) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop[J]. Talanta, 2014, 130:26-32
[14] 孙梅,刘桂建,吴强华. 浊点萃取技术在环境样品痕量元素分析中的应用研究进展[J]. 环境化学, 2013, 32(6):1016-1024
[15] SEN G S. Adsorption of metal ions by clays and inorganic solids[J]. Rsc Advances, 2014, 54(4):28537-28586
[16] DABROWSKI A, HUBICKI Z, PODKOSCIELNY P. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2):91-106
[17] 安明日, 陈明丽, 王建华. 纳米Fe3O4分离富集-悬浮进样-氢化物发生原子荧光法测定砷形态[J]. 分析化学, 2013, 41(1):105-109
[18] 谢建新,吴云英,陈文静,等. Fe3O4/MnO2复合纳米材料对水中刚果红吸附性能研究[J]. 贵州师范大学学报(自然科学版), 2017, 35(6):89-92
[19] YU H, AI X, XU K, et al. UV-assisted Fenton digestion of rice for the determination of trace cadmium by hydride generation atomic fluorescence spectrometry[J]. Analyst, 2016, 141(4):1512-1518