登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页>《中国测试》期刊>本期导读>基于正交多项式拟合的称重传感器非线性校正

基于正交多项式拟合的称重传感器非线性校正

1108    2018-11-29

¥0.50

全文售价

作者:黄永刚

作者单位:中国铁道科学研究院标准计量研究所, 北京 100015


关键词:机车车辆称重传感器;非线性校正;正交多项式;最小二乘法;曲线拟合


摘要:

因受自身材质、工艺的限制以及外界环境影响,机车车辆称重传感器实际的输入输出关系存在非线性特性,造成测量结果的非线性误差,制约其测量精度。对此,该文采用曲线拟合法、以正交多项式做最小二乘拟合建立非线性校正环节,对机车车辆称重传感器进行非线性校正,来减小非线性特性对测量结果造成的影响,提高测量精度,同时避免正规方程系数矩阵的病态问题。实验结果表明,校正后系统的非线性得到明显改善,测量精度得到显著提高,同时该方法操作简单、校正效率高、结果稳定可靠,具有较好的工程应用价值。


The non-linear correction of the weighing sensor based on orthogonal polynomial fitting method

HUANG Yonggang

Standards & Metrology Research Institute, China Academy of Railway Sciences, Beijing 100015, China

Abstract: Because of the material, process restrictions and external environmental impact, the actual input-output relationship of rolling stock weighing sensor presents non-linear characteristics, which causes non-linear error of measurement results and limits the measurement accuracy, thus non-linear correction is needed. The curve fitting method and least squares method based on orthogonal polynomial are proposed to establish non-linear correction links, so as to achieve non-linear correction for rolling stock weighing sensor and thereby reduce the influence of non-linear characteristics on the measurement results and improve the measurement accuracy, and avoid the ill-posed problem of the matrix of formal equations at the same time. The test results show that the system nonlinearity of corrected system is obviously improved, and the measurement accuracy is greatly improved, and the method has the advantages such as easy operation, high correction efficiency, stable and reliable results and high engineering application value.

Keywords: rolling stock weighing sensor;non-linear correction;orthogonal polynomial;least square method;curve fitting method

2018, 44(4): 91-95  收稿日期: 2017-07-23;收到修改稿日期: 2017-10-13

基金项目: 

作者简介: 黄永刚(1981-),男,湖南常德市人,高级工程师,硕士,主要从事轨道交通机车车辆检测技术的研究。

参考文献

[1] 刘剑平,蔡红英,吕秀珍. 称重传感器弹性元件结构参数对非线性误差的影响[J]. 机械工程师,2005(9):94-95.
[2] 魏俊波,张士勇. 对传感器非线性误差的研究[J]. 大学物理实验,2005(1):16-18.
[3] 朱鹏飞,黄松和,梅菊. 组合秤称重传感器大变形致非线性误差分析[J]. 包装工程,2015,36(23):103-106.
[4] 王瑞玲. 电阻应变式测力传感器线性化电路的设计与分析[J]. 计量与测试技术,2005(1):16-17.
[5] 景婧. 应变式称重传感器的非线性校正[J]. 计算机应用研究,2013,30(1):189-191.
[6] 郭伟,张栋,李巨韬,等. 改进型BP神经网络对电容称重传感器的非线性校正[J]. 传感技术学报,2012,25(10):1354-1360.
[7] 庄育锋,胡晓瑾,翟宁. 基于BP神经网络的微量药品动态称重系统非线性补偿[J]. 仪器仪表学报,2014,35(8):1914-1920.
[8] 谢煜,杨三序,李晓伟. 基于反拟合法的电容称重传感器非线性校正[J]. 仪器仪表学报,2007,28(5):923-927.
[9] 李庆扬,王能超,易大义. 数值分析[M]. 北京:清华大学出版社,2008:125-131.
[10] 常锦才,赵龙,杨倩丽. 基于正交多项式的数据拟合方法[J]. 河北理工大学学报(自然科学版),2011,33(4):79-84.
[11] 朱晓东,鲁铁定,陈西江. 正交多项式曲线拟合[J]. 东华理工大学学报(自然科学版),2010,33(4):398-400.
[12] 费业泰. 误差理论与数据处理[M]. 北京:机械工业出版社,2010:48-49.