您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>船舶数字化制造的测量技术创新

船舶数字化制造的测量技术创新

4371    2018-12-27

免费

全文售价

作者:林嘉睿1, 郭烽1, 齐峰2, 张饶1, 邾继贵1

作者单位:1. 天津大学 精密测试技术及仪器国家重点实验室, 天津 300072;
2. 江南造船(集团)有限责任公司, 上海 201913


关键词:数字化造船;大尺寸坐标精密测量;三维测量场;室内空间测量定位系统


摘要:

大型高性能船舶及其先进制造技术发展迅速,传统船舶分散制造模式的制造质量、效率、能耗得不到有效控制。随着数字化制造技术在船舶制造领域逐步推广,精度造船理念成为主流和方向,由此对贯穿于整个造船工艺流程的测量技术尤其是空间坐标测量定位技术提出迫切需求。面对超大空间船舶数字化制造的精密测量难题,基于理论研究和设备研制,该文提出采用网络多站模式的非正交控制网,构造大空间整体结构化三维测量场的精密测量定位新方法,分析整体结构化测量场的关键技术,为数字化造船的高精度、高效率测量问题提供新思路。


Innovative measurement technology for digital shipbuilding

LIN Jiarui1, GUO Feng1, QI Feng2, ZHANG Rao1, ZHU Jigui1

1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China;
2. Jiangnan Shipyard(Group) Co., Ltd., Shanghai 201913, China

Abstract: With the fast development of large-scale and high-performance ships and their advanced manufacturing technology, conventional decentralized shipbuilding pattern lacks control of the quality, efficiency and energy consumption of the manufacturing process. The widespread of digital manufacturing technology in the field of shipbuilding has gradually made the idea of precise shipbuilding go mainstream, therefore raises stricter requirements for the measurement technology throughout the shipbuilding process, especially the workshop coordinates measurement and positioning. To solve the problem of precise measurement for digital shipbuilding in extra-large space, this work raises a novel method to realize precise measurement and positioning with a nonorthogonal control field based on network-like multi-station measurement system. It also analysis the key technology of a global structured measurement field, providing new ideas to promote measurement accuracy and efficiency in digital shipbuilding.

Keywords: digital shipbuilding;large-scale precise coordinate measurement;three-dimensional measurement field;workshop measurement and positioning system

2018, 44(12): 1-5,18  收稿日期: 2018-09-09;收到修改稿日期: 2018-10-12

基金项目: 国家自然科学基金(51775380,51835007);国家重点研发计划(2017YFF0204802);中国科协“青年人才托举工程”(2016QNRC001)

作者简介: 林嘉睿(1984-),男,福建泉州市人,副教授,博士,主要从事激光及光电测试技术、大尺寸测量等方面研究

参考文献

[1] 秦琦, 祁斌, 沈苏雯, 等. 2017年世界船舶市场评述与2018年展望[J]. 船舶, 2018, 29(1):1-18
[2] 魏亚华. 浅谈船舶建造技术现状及管理方法[J]. 内燃机与配件, 2017(19):65-66
[3] 吴笑风, 岳宏, 石瑶, 等. 我国船舶产业智能制造及其标准化现状与趋势[J]. 舰船科学技术, 2016, 38(9):1-6
[4] 张简. 浅谈中国造船企业的核心竞争力[J]. 中国集体经济, 2017(1):80-81
[5] 李广云, 李宗春. 工业测量系统原理与应用[M]. 北京:测绘出版社, 2011:19-27.
[6] 李奇楠. 船舶智能制造标准体系构建[J]. 造船技术, 2017(3):8-14,23
[7] 李辰昱. 造船企业智能制造技术应用规划研究[D]. 镇江:江苏科技大学, 2016.
[8] 周济. 走向新一代智能制造[J]. 中国科技产业, 2018(6):1-5
[9] 丁运来, 宫贵忠. 船舶数字化制造的若干关键技术[J]. 内燃机与配件, 2017(24):121-122
[10] 张维英, 纪明月, 侯垚森, 等. 我国船舶制造数字化及信息化浅谈[J]. 中国设备工程, 2017(12):208-209
[11] 许融明, 杨港, 赵任张. 造船精度管理[J]. 船舶工程, 2010(S1):8-11
[12] 应长春. 船舶工艺技术[M]. 上海:上海交通大学出版社, 2013:95-101.
[13] 李广云. 工业测量系统最新进展及应用[J]. 测绘工程, 2001, 10(2):36-40
[14] 李峥. 中国制造2025[J]. 现代制造, 2015(7):1
[15] FRANCESCHINI F, GALETTO M, MAISANO D, et al. Distributed large-scale dimensional metrology:new insight[J]. Springer Science & Business Media, 2011, 220(12):121-129
[16] PEGGS G N, MAROPOULOS P G, HUGHES E B, et al. Recent developments in large-scale dimensional metrology[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2009, 223(6):571-595
[17] 林嘉睿. 大型复杂物体组合测量方法研究[D]. 天津:天津大学, 2012.
[18] 赵子越. 基于wMPS空间测量场的动态测量定位方法与技术研究[D]. 天津:天津大学, 2016.
[19] YANG L H, WANG Y, ZHU J G, et al. Distributed optical sensor network with self-monitoring mechanism for accurate indoor location and coordinate measurement[J]. Applied Mechanics and Materials, 2012, 190-191:972-976
[20] 任瑜. 异构网络坐标测量精度分析与算法研究[D]. 天津:天津大学, 2016.
[21] 杨凌辉. 基于光电扫描的大尺度空间坐标测量定位技术研究[D]. 天津:天津大学, 2010.
[22] XIONG Z, ZHU J G, ZHAO Z Y, et al. Workspace measuring and positioning system based on rotating laser planes[J]. Mechanics, 2012, 18(1):94-98
[23] SAADAT M, CRETIN L. Measurement systems for large aerospace components[J]. Sensor Review, 2002, 22(3):199-206
[24] MUELANER J E, MAROPOULOS P. Large scale metrology in aerospace assembly[C]//5th International Conference on Digital Enterprise Technology.Proceedings of DET2008, 2008.
[25] 熊芝. wMPS空间测量定位网络布局优化研究[D]. 天津:天津大学, 2012.
[26] GUO S, LIN J, REN Y, et al. Study of network topology effect on measurement accuracy for a distributed rotary-laser measurement system[J]. Optical Engineering, 2017, 56(9):094101
[27] REN Y, LIN J, ZHU J, et al. Coordinate transformation uncertainty analysis in large-scale metrology[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(9):2380-2388
[28] LIU Z, ZHU J, YANG L, et al. A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning[J]. Measurement Science and Technology, 2013, 24(10):105004
[29] 杨凌辉, 邾继贵, 张广军, 等. 采用标准尺的工作空间测量定位系统定向方法[J]. 天津大学学报, 2012(9):814-819
[30] 林嘉睿, 孟伟, 杨凌辉, 等. 激光跟踪仪的双面互瞄定向[J]. 光学精密工程, 2017, 25(10):2752-2758
[31] EASA S M. Space resection in photogrammetry using collinearity condition without linearisation[J]. Survey Review, 2010, 42(315):40-49
[32] 倾敏, 林嘉睿, 郭思阳, 等. 基于后方交会的室内空间测量定位系统定向方法[J]. 纳米技术与精密工程, 2017(6):473-479
[33] LIU Z, ZHU J, YANG L, et al. A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning[J]. Measurement Science and Technology, 2013, 24(10):105004
[34] SHI S, YANG L, Lin J, et al. Omnidirectional angle constraint based dynamic six-degree-of-freedom measurement for spacecraft rendezvous and docking simulation[J]. Measurement Science and Technology, 2018, 29(4):045005
[35] GUO S, LIN J, REN Y, et al. Application of a self-compensation mechanism to a rotary-laser scanning measurement system[J]. Measurement Science and Technology, 2017, 28(11):1150
[36] 邾继贵, 郭思阳, 史慎东, 等. 面向先进装备制造业的室内空间测量定位系统[J]. 计测技术, 2018, 38(3):9-19