您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>羰基还原酶基因工程菌产酶和不对称合成(R)-苯乙醇的条件优化

羰基还原酶基因工程菌产酶和不对称合成(R)-苯乙醇的条件优化

1336    2019-04-28

免费

全文售价

作者:郝军莉, 章英, 杨天兵, 王婷, 杨宇, 王丹

作者单位:成都医学院生物科学与技术学院, 四川 成都 610065


关键词:羰基还原酶;基因工程菌;不对称合成;产酶条件;转化条件


摘要:

以羰基还原酶基因工程菌全细胞为催化剂,探讨不对称合成(R)-苯乙醇的各种影响因素,优化其产酶和转化条件。结果表明,优化后的发酵培养基为甘油10 g/L、蛋白胨10 g/L、酵母粉5 g/L,(NH42SO4 5 g/L、NaCl 10 g/L,氨苄青霉素50 μg/mL,pH 7.2;诱导剂IPTG的浓度为0.25 mmol/L,诱导时间为20 h,诱导温度为18 ℃,此条件下测得基因工程菌粗酶活最高为6.65 U/mL。建立的最佳转化条件:羰基还原酶基因工程菌发酵20 h后的细胞浓度为0.3 g/mL,转化体系初始pH为7.0,温度为37 ℃,辅助底物异丙醇浓度为10%,底物终浓度为60 mmol/L,转化时间为24 h。此时底物转化率最高可达98.88%,产物对映体过量值(e.e.值)为99.43%。反应体系扩增至3 000 mL后,产物e.e.值仍保持在99.0%左右,底物转化率可为92%以上,(R)-苯乙醇的产量也可达到6.67 g/L。


Optimization of enzyme production and asymmetric synthesis of (R)-phenylethyl alcohol by carbonyl reductase genetic engineering bacteria
HAO Junli, ZHANG Ying, YANG Tianbing, WANG Ting, YANG Yu, WANG Dan
College of Bioscience and Technology, Chengdu Medical College, Chendu 610065, China
Abstract: The carbonyl reductase genetic engineering bacteria whole cells were used as catalysts to investigate various influencing factors of asymmetric synthesis of (R)-phenylethyl alcohol in order to establish optimal enzyme production and transformation conditions. The results showed that the optimized fermentation medium was glycerol 10 g/L, peptone 10 g/L, yeast powder 5 g/L, (NH4)2SO4 5 g/L, NaCl 10 g/L, ampicillin 50 μg/mL, pH 7.2, and the concentration of IPTG was 0.25 mmol/L, the induction time was 20 h, the induction temperature was 18℃. Under these conditions, the crude enzyme activity of carbonyl reductase genetic engineering bacteria was up to 6.65 U/mL. The optimal transformation conditions were as follows:the concentration of carbonyl reductase genetic engineering bacteria cells fermented for 20 h was 0.3 g/mL, the initial pH was 7.0, the reaction temperature was 37℃, the isopropanol concentration as the auxiliary substrate was 10%, the final concentration of the substrate was 60 mmol/L, and the conversion time was 24 hours. At this time, the conversion could reach 98.88% with enantiomeric excess value of produce 99.43%. After the reaction system was amplified to 3 000 mL, the e.e. value of product remained at about 99.0%, the conversion was over 92%, and the yield of (R)-phenylethyl alcohol reached 6.67 g/L.
Keywords: carbonyl reductase;genetic engineering bacteria;asymmetric synthesis;enzyme production conditions;transformation conditions
2019, 45(4):73-79  收稿日期: 2018-12-30;收到修改稿日期: 2019-01-27
基金项目: 四川省科技厅科技支撑项目(No.2016GZ0364);四川省教育厅科研项目(16ZA0287,17ZA0102);四川省卫生厅项目(18PJ586,16PJ103);成都医学院科研创新团队项目(CYTD16-04)
作者简介: 郝军莉(1985-),女,河南开封市人,副教授,博士,研究方向为分子生物学
参考文献
[1] PATEL R N. Biocatalytic Synthesis of chiral alcohols and amino acids for development of pharmaceuticals[J]. Biomolecules, 2013(4):741-777
[2] 白东亚, 何军邀, 欧阳斌, 等. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5):41-51
[3] PANIĆ M, DELAČ D, ROJE M, et al. Green asymmetric reduction of acetophenone derivatives:Saccharomyces cerevisiae and aqueous natural deep eutectic solvent[J]. Biotechnology Letters, 2019, 41(2):253-262
[4] DUDZIK A, SNOCH W, BOROWIECKI P, et al. Asymmetric reduction of ketones and beta-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum[J]. Appl Microbiol Biotechnol, 2015, 99:5055-5069
[5] 来源于雷氏乳杆菌的醇脱氢酶基因的挖掘及其在不对称合成(R)-4-氯-3-羟基丁酸乙酯中的应用研究[D]. 上海:华东理工大学, 2017
[6] NAPORA W K, STROHMEIER G A, SONAVANE M N, et al. Enantiocomplementary Yarrowia lipolytica oxidoreductases:alcohol dehydrogenase 2 and short chain dehydrogenase/reductase[J]. Biomole-cules, 2013, 3(3):449-460
[7] XU G, ZHANG Y, WANG Y, et al. Genome hunting of carbonyl reductases from Candida glabrata for efficient preparation of chiral secondary alcohols[J]. Bioresource Technology, 2018, 247:553-560
[8] 王丹, 曾顺泽, 彭果, 等. R-苯乙醇高产菌株的筛选及分子生物学鉴定[J]. 四川师范大学学报(自然科学版), 2014, 37(2):248-252
[9] ZHENG Z, XIA M, FANG X, et al. Enhanced biosynthesis of chiral phenyllactic acid from L-phenylalanine through a new whole-cell biocatalyst.[J]. Bioprocess & Biosystems Engineering, 2018, 41(8):1-8
[10] GRIMM A R, SAUER D F, POLEN T, et al. A whole cell E. coli display platform for artificial metalloenzymes:poly(phenylacetylene) production with a rhodium-nitrobindin metalloprotein[J]. Acs Catalysis, 2018, 8(3):2611-2614
[11] XU J, ZHOU S, ZHAO Y, et al. Asymmetric whole-cell bioreduction of sterically bulky 2-benzoylpyridine derivatives in aqueous hydrophilic ionic liquid media[J]. Chemical Engineering Journal, 2017, 316(Complete):919-927
[12] WANG C, XIN F, KONG X, et al. Enhanced isopropanol-butanol-ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant Clostridium acetobutylicum XY16[J]. Biotechnology for Biofuels, 2018, 11(1):12-21
[13] 石小丹. 酮基还原酶活性检测方法的构建及其发酵过程特性研究[D]. 宜昌:三峡大学, 2015
[14] 崔颖磊, 刘运超, 冯华, 等. 分子伴侣对A型FMDV结构蛋白VP1在大肠杆菌中可溶性表达的促进作用[J]. 河南农业大学学报, 2018, 52(3):350-355
[15] SHARMA M, MANGAS-SANCHEZ J, TURNER N J, et al. NAD(P)H-dependent dehydrogenases for the asymmetric reductive amination of ketones:structure, mechanism, evolution and application[J]. Advanced Synthesis & Catalysis, 2017, 359(12):2011-2025