您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>温度载荷条件下的新装备故障模式影响及危害性分析

温度载荷条件下的新装备故障模式影响及危害性分析

1705    2019-08-27

免费

全文售价

作者:杨金鹏1,2,3, 连光耀2, 李会杰2

作者单位:1. 陆军工程大学石家庄校区导弹工程系, 河北 石家庄 050003;
2. 中国人民解放军32181部队, 河北 石家庄 050003;
3. 中国人民解放军75833部队, 广东 广州 510000


关键词:故障模式影响及危害性分析;性能退化;加速退化试验;热失效


摘要:

针对由于新装备历史数据缺乏、依赖人工分析导致测试性试验样本存在主观性和盲目性等问题,在现有方法的基础上提出温度载荷下的的故障模式影响及危害性分析方法。首先,分别建立元器件和焊点在温度载荷下的失效模型;然后,提出基于元器件、焊点融合失效模型的典型故障模式的失效概率计算方法;最后,将元器件和焊点加速退化试验数据带入融合失效模型进行计算实现最终分析。试验结果表明:该方法可对现有故障模式影响及危害性分析方法提供有效补充和修正,充分暴露产品测试性设计缺陷并为测试性设计改进工作提供支持。


Failure mode effect and critically analysis of new equipmen under thermal loadings
YANG Jinpeng1,2,3, LIAN Guangyao2, LI Huijie2
1. Shijiazhuang Campus of Army Engineering University Department of Missile Engineering, Shijiazhuang 050003, China;
2. 32181 Force of PLA, Shijiazhuang 050003, China;
3. 75833 Force of PLA, Guangzhou 510000, China
Abstract: Considering the traditional failure mode analysis problem of higher subjectivity, stronger blindness and lacking of electronic equipment historical failure data in traditional failure mode effect and critically analysis (FMECA), based on the traditional method, an improved method of failure mode analysis was proposed. Firstly, the failure models of components and solder joints under the thermal loadings are established according to the existing methods; Then a failure model fused components and solder joints is presented to calculate the failure probability; Finally, the final failure mode effect and critically analysis could be obtained according to the failure data obtained by accelerate degradation test and the failure model.Case study indicates that the optimized method could provide effective complement and correction for traditional failure mode effect and critically analysis.
Keywords: failure mode effect and critically analysis;performance degradation;accelerated degradation test(ADT);thermal failure
2019, 45(8):156-160  收稿日期: 2018-05-29;收到修改稿日期: 2018-08-02
基金项目:
作者简介: 杨金鹏(1993-),男,河北沧州市人,硕士研究生,专业方向为装备测试性设计与分析
参考文献
[1] Maintenance management outline for system and devices:MIL-STD-470A[S]. U. S. Government Printing Office,1983.
[2] COLLI A. Failure mode and effect analysis for photovoltaic systems[J]. Renewable&Sustainable Energy Reviews, 2015, 50:804-809
[3] 石君友.测试性设计分析与验证[M]北京:国防工业出版社, 2011:282-284.
[4] RAMAKRISHNAN A, PECHT M G. A life consumption monitoring methodology for electronic systems[J]. IEEE Transactions on Components&Packaging Technologies, 2003, 26(3):625-634
[5] ROUET V, MINAULT F, DIANCOURT G, et al. Concept of smart integrated life consumption monitoring system for electronics[J]. Microelectronics Reliability, 2007, 47(12):1921-1927
[6] 倪灿斌.基于数据挖掘的FMEA分析方法[D].成都:电子科技大学, 2014.
[7] 何月顺,丁秋林.基于数据挖掘思想的故障模式分析[J].应用科学学报, 2005, 23(5):545-547
[8] 窦赛,陈国顺,吕艳梅,等.无人机系统的模糊FMECA分析方法研究[J].现代电子技术, 2011, 34(23):7-9
[9] 孙华,唐晓庆,李瑞. FMECA和FTA综合分析法在动密封系统中的应用[J].装备学院学报, 2015, 26(6):82-88
[10] 周新建,李志强.利用FMECA法的兆瓦级风力机故障模式分析[J].华东交通大学学报, 2017, 34(1):107-117
[11] 王宇晨,成斌.基于风电机组常见故障的模糊FMECA评价研究[J].电力系统保护与控制, 2018, 46(1):143-149
[12] 陈然,连光耀,孙江生,等.加速退化试验改进的故障模式影响及危害性分析[J].西安电子科技大学学报, 2017, 44(3):164-169
[13] KANDA R, JAIN K. Thermal management of low volume complex electronic systems[C]//Springer.Proceedings of the International Conference onResearch and Innovations in Mechanical Engin-eering, 2014:519-533.
[14] MIRMAN B. Tools for stress analysis of microelectronic structures[J]. Journal of Electronic Pakaging, 2010, 122(3):280-282
[15] 景博,胡家兴,黄以锋,等.电子设备无铅焊点的热疲劳评估进展与展望[J].空军工程大学学报(自然科学版), 2016, 17(6):35-40
[16] NORRIS K, LANDZBERG A. Reliability of controlled collapse interconnections[J]. IBM Journal of Research and Development, 1969, 13(3):266-271
[17] SALMELA O. Acceleration factors for Lead-Free solder materials[J]. IEEE Trans Components Pack T, 2007, 30(4):158-165
[18] VASUDEVAN V, FAN X. An acceleration model for Pb-free (SAC) solder joint reliability under thermal cycling[C]//Electron Components and Technology Conference, 2008:139-145.
[19] 于宗乐.温度循环载荷条件下电子设备多失效模式加速试验技术研究[D].长沙:国防科学技术大学, 2015.