您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>一种主动冷却的高温光纤式叶尖定时传感器

一种主动冷却的高温光纤式叶尖定时传感器

2946    2020-01-19

免费

全文售价

作者:何赒, 蒋佳佳, 叶德超, 段发阶, 李杨宗

作者单位:天津大学 精密测试技术及仪器国家重点实验室, 天津 300072


关键词:光纤传感器;叶片振动;叶尖定时;高温传感;主动冷却


摘要:

针对现有高温光纤式叶尖定时传感器最高耐温只到650 ℃,无法满足更高温度条件下燃气轮机叶片振动监测需求的问题,研究并设计一种采用主动冷却方式的高温光纤式叶尖定时传感器。为提高传感器的耐温性能,采用中空式的结构设计以及主动冷却的降温方式提高传感器探头的耐温性能。应用Ansys有限元分析软件进行热-流-固耦合分析,对传感器设计的可靠性进行理论论证。在此基础上,对设计的高温光纤式叶尖定时传感器进行高温试验验证。结果表明:试验结果与仿真结果具有良好的一致性,该传感器工作温度最高可达1 300 ℃,满足大多数高温环境下燃气轮机叶片振动参数监测的要求。


An actively cooled high-temperature optical fiber tip-timing sensor
HE Zhou, JIANG Jiajia, YE Dechao, DUAN Fajie, LI Yangzong
State Key Lab of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
Abstract: For the existing high-temperature optical fiber tip-timing sensor, the maximum temperature resistance is only 650 ℃, which can not meet the requirements of gas turbine blade vibration monitoring under higher temperature conditions. A high-temperature optical fiber tip-timing sensor with active cooling is studied and designed. In order to improve the temperature resistance of the sensor, the hollow structure design and the cooling method of active cooling improve the temperature resistance of the sensor probe. Thermal-flow-solid coupling analysis was performed using Ansys finite element analysis software to theoretically demonstrate the reliability of sensor design. On this basis, the designed high-temperature optical fiber tip-timing sensor was tested by high temperature test. The results show that the test results are in good agreement with the simulation results. The operating temperature of the sensor can reach up to 1 300 ℃, which meets the requirements of gas turbine blade vibration parameter monitoring in most high temperature environments.
Keywords: optical fiber sensor;blade vibration;tip-timing;high temperature sensing;active cooling
2020, 46(1):88-92  收稿日期: 2019-08-10;收到修改稿日期: 2019-09-15
基金项目: 国家自然科学基金(51775377)
作者简介: 何赒(1996-),男,湖南永州市人,硕士研究生,专业方向为传感器研究与旋转叶片振动监测
参考文献
[1] 段发阶, 方志强, 孙宇扬, 等. 叶尖定时旋转叶片实时振动测量技术[J]. 光电工程, 2005(3):28-31,43
[2] SINGH P, NESTMANN F. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines[J]. Experimental Thermal and Fluid Science, 2011, 35(1):121-134
[3] 欧阳涛. 基于叶尖定时的旋转叶片振动检测及参数辨识技术[D]. 天津:天津大学, 2011.
[4] GURU S S, SHYLAJA S, KUMAR S, et al. Pre-emptive rotor blade damage identification by blade tip timing method[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(7):072503
[5] TOMASSINI R, ROSSI G, BROUCKAERT J F. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems[J]. Review of Scientific Instruments, 2016, 87(10):102505
[6] 陈庆光, 王超. 基于叶尖定时法的旋转叶片振动监测技术研究与应用进展[J]. 噪声与振动控制, 2016, 36(1):1-4, 37
[7] 范博楠, 张玉波, 王海斗, 等. 基于叶尖定时技术的叶轮叶片动态监测研究现状[J]. 振动与冲击, 2016, 35(5):96-102
[8] 方志强. 叶尖定时传感器及叶片振动信号处理技术的研究[D]. 天津:天津大学, 2004.
[9] 冯军楠, 段发阶, 叶德超, 等. 一种耐高温光纤式叶尖定时传感器及验证装置[J]. 纳米技术与精密工程, 2016, 14(3):167-172
[10] 顾庆昌, 程礼友, 张万成. 耐高温金属衣层光纤及其热应力分析[J]. 电子工艺技术, 2010, 31(5):290-292, 309
[11] 段发阶, 蒋佳佳, 郭浩天, 等. 一种光纤束式叶尖定时传感器:104515537[P]. 2015-04-15.
[12] LAWSON C. Capacitance tip timing techniques in gas turbines[D]. Cranfield University, 2003.
[13] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics:the finite volume method[M]. Pearson education, 2007.