您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>六轴工业机器人工作空间分析及区域性能研究

六轴工业机器人工作空间分析及区域性能研究

2262    2020-05-27

免费

全文售价

作者:董成举1,2, 刘文威1,3, 李小兵1,2, 陈勃琛1,2, 郭广廓1,3

作者单位:1. 工业和信息化部电子第五研究所, 广东 广州 510610;
2. 广东省工业机器人可靠性工程实验室, 广东 广州 510610;
3. 广东省智能机器人可靠性工程技术研究中心, 广东 广州 510610


关键词:六轴工业机器人;性能测试;工作空间;多工作域;分区


摘要:

为全面准确地评价六轴工业机器人的位姿准确度和位姿重复性等性能指标,指导机器人不同工况下的应用,对机器人的多工作域性能指标进行测试分析。利用DH方法建立某型机器人运动学模型,通过蒙特卡洛方法求解该型工业机器人的最大工作空间;对机器人最大工作立方体进行区域划分,得到机器人多工作域;利用激光跟踪仪完成机器人多工作域性能测试。结果表明:该型机器人位置准确度为3.305 mm,位置重复性为0.039 mm;分析多工作域性能可知,位于机器人工作空间上部的工作域位置准确度优于下方工作域;机器人各工作域的位置重复性基本一致,内侧工作域位置重复性略优于外侧工作域。


Working space analysis and space division performance research on 6-DOF industrial robot
DONG Chengju1,2, LIU Wenwei1,3, LI Xiaobing1,2, CHEN Bochen1,2, GUO Guangkuo1,3
1. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China;
2. Guangdong Industrial Robot Reliability Engineering Laboratory, Guangzhou 510610, China;
3. Guangdong Intelligent Robot Reliability Engineering Research Center, Guangzhou 510610, China
Abstract: To evaluate the pose accuracy and pose repeatability of the six-axis industrial robot comprehensively and exactly, and guide the application of the robot under different working conditions, multi-working zone performance of six-axis industrial robot was tested and analyzed. The kinematics model was established by using DH (Denavit Hartenberg) model, and then the maximum working space of this industrial robot was solved by Monte Carlo method. To get the multi-working zone of the robot, the maximum working cube was divided, and then the pose accuracy and pose repeatability of multi-working zone was tested by using the laser tracker. The results show that the positioning accuracy of the robot is 3.305 mm, and the positioning repeatability is 0.039 mm. Positioning accuracy of the upper working zone is better than that of lower working zone. Positioning repeatability of the whole working zone is little difference, positioning repeatability of inner side is slightly better than that of outside.
Keywords: 6-DOF industrial robot;performance test;working space;multi-working zone;space division
2020, 46(5):154-160  收稿日期: 2019-12-05;收到修改稿日期: 2020-01-23
基金项目: 国家重点研发计划项目(2017YFB1300900);广东省自然科学基金(2018A030310667);广州市科技计划项目(202002030314)
作者简介: 董成举(1991-),男,河南漯河市人,助理工程师,硕士,主要从事机器人技术研究
参考文献
[1] 谭建荣, 刘达新, 刘振宇, 等. 从数字制造到智能制造的关键技术途径研究[J]. 中国工程科学, 2017, 19(3): 39-44
[2] ROSSMANN J. eRobotics meets the internet of things: modern tools for today's challenges in robotics and automation[C]//International Conference on Developments of E-Systems Engineering. IEEE, 2016.
[3] 曲道奎. 机遇与挑战——中国机器人产业发展的深度思考[J]. 科技导报, 2015, 485(23): 33-36
[4] NIKU S B. Introduction to robotics: analysis, control, applications[M]. 2版. 北京: 电子工业出版社, 2011: 11-13.
[5] 工业机器人-性能规范及其试验方法: GB/T 12642—2013[S]. 北京: 中国质检出版社, 20134.
[6] MOROZOV M, RIISE J, SUMMAN R, et al. Assessing the accuracy of industrial robots through metrology for the enhancement of automated non-destructive testing[C]// 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). IEEE, 2016.
[7] YOUNG K, PICKIN C G. Accuracy assessment of the modern industrial robot[J]. Industrial Robot: An International Journal, 2000, 27(6): 427-436
[8] SLAMANI M, NUBIOLA A, BONEV I. Assessment of the positioning performance of an industrial robot[J]. Industrial Robot: An International Journal, 2012, 39(1): 57-68
[9] 王海霞, 吴清锋, 刘仲义, 等. 六关节机器人位姿精度测量与误差分析[J]. 制造技术与机床, 2018, 672(6): 34-39
[10] 张鑫龙, 原思聪. 码垛机器人位置精度测试与分析[J]. 机床与液压, 2017, 45(3): 73-77
[11] 麦丽菊, 张艳菊, 徐子轩, 等. 机器人重复精度测试系统期间核查方法的研究[J]. 机床与液压, 2018, 46(11): 66-69