您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>泡沫铝夹芯结构在油气爆炸荷载作用下的抗爆性能试验研究

泡沫铝夹芯结构在油气爆炸荷载作用下的抗爆性能试验研究

2014    2020-09-17

免费

全文售价

作者:何秋霖1, 石少卿1, 赵启明1, 蒋新生2, 隋顺彬1, 梁建军2

作者单位:1. 陆军勤务学院军事设施系,重庆 401331;
2. 陆军勤务学院火灾与爆炸安全防护重庆市重点实验室,重庆 401331


关键词:防灾减灾工程及防护工程;泡沫铝夹芯结构;油气爆炸;冲击波


摘要:

为研究泡沫铝夹芯结构对油气爆炸冲击波的衰减性能及影响其性能的因素,设计一种试验测试系统。在模拟坑道内,点燃混合均匀的油气混合物获取爆炸荷载,并通过调节油气浓度比例来控制爆炸荷载大小,对油气爆炸荷载作用下泡沫铝夹芯结构的防护性能进行定量分析。结果表明,当泡沫铝芯层厚度≥10 mm时,泡沫铝夹芯结构对油气爆炸冲击波的衰减效果优于实体金属结构;泡沫铝夹芯结构对油气爆炸冲击波的衰减效果随芯层厚度的增加而提升,但衰减效率呈逐渐减小趋势,试验得出的芯层最优厚度下限为16 mm。


Experimental study on the blast-resistant performance of aluminum foam sandwich structure under the effect of fuel-air mixture explosion
HE Qiulin1, SHI Shaoqing1, ZHAO Qiming1, JIANG Xinsheng2, SUI Shunbin1, LIANG Jianjun2
1. Department of Military Facilities, Army Logistics University of PLA, Chongqing 401331, China;
2. Chongqing Key Laboratory of Fire and Explosion Safety, Army Logistics University of PLA, Chongqing 401331, China
Abstract: In order to analyze the attenuation and other effective factors of aluminum foam sandwich structure to the fuel-air mixture explosion shock wave, this research designed a kind of testing system for experiments. In the tunnel model, by igniting the mixed fuel-air commixture, the explosive load can be obtained. Moreover, by adjusting the concentration of the fuel-air mixture to control the magnitude of the explosive loads, quantitative analysis about the protection performance of the aluminum foam sandwich structure can be depicted when under the blasting load generated by the fuel-air. The results show that when the thickness of the foamed aluminum interlayer is greater than or equal to 10 mm, the foam-aluminum sandwich structure has better effect in attenuating the fuel-air mixture explosion wave, compared to metal solid structure. Although the foam-aluminum sandwich structure has better attenuation effect towards the fuel-air mixture explosion wave with thicker interlayer, the efficiency of this attenuation effect is decreasing. After experiments, the minimum thickness of the optimal design is 16 mm.
Keywords: disaster prevention engineering and protection engineering;aluminum foam sandwich structure;fuel-air mixture explosion;shock wave
2020, 46(8):136-142  收稿日期: 2020-01-09;收到修改稿日期: 2020-04-02
基金项目: 重庆市自然科学基金项目(cstc2019jcyj-msxmX0215);重庆市高校优秀成果转化资助项目(KJZH7138);军队面上项目(CLJ19J019)
作者简介: 何秋霖(1981-),男,重庆市人,讲师,博士,主要从事防灾减灾工程及防护工程的研究
参考文献
[1] 刘欢. 泡沫铝材料的吸能与防爆特性研究[D]. 沈阳: 东北大学, 2014.
[2] BANHART J. Manufacture, characterization and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46: 559-632
[3] VAIDYA U K, PILLAY S, BARTUS S, et al. IMPact and post-iMPact vibration response of protective metal foam composite sandwich plates[J]. Materials Science & Engineering A, 2006, 428(s1-2): 59-66
[4] KATHRYN D A, LANKFORD J J. High strain rate compression of closed-cell aluminium foams[J]. Materials Science and Engineering A, 2000, 293: 157-164
[5] 罗伟铭, 石少卿, 孙建虎, 等. 铝蜂窝填砂复合夹芯结构的低速冲击响应试验研究[J]. 振动与冲击, 2018, 37(10): 50-56
[6] 王永刚, 战时胜, 王礼立. 爆炸载荷下泡沫铝冲击波衰减的实验和数值模拟研究[J]. 爆炸与冲击, 2013, 23(6): 516-521
[7] 王涛, 余文力, 秦庆华, 等. 爆炸载荷下泡沫铝夹芯结构变形与破坏模式的实验研究[J]. 兵工学报, 2016, 37(8): 1456-1463
[8] ZHU F, WANG Z H, LU G X. Analytical investigation and optimal design of sandwich panels subjected to shock loading[J]. Materials and Design, 2009, 30(1): 91-100
[9] 顾文彬, 徐景林, 刘建青, 等. 多层泡沫铝夹芯结构的抗爆性能[J]. 含能材料, 2017, 25(3): 240-247
[10] 马砾, 于文聪, 王秋红. 油罐储罐火灾爆炸事故研究现状与探讨[C]//2018中国消防协会科学技术年会论文集, 2018.
[11] 蒋新生. 军用油库受限空间油气爆炸及爆炸抑制研究[D]. 重庆: 后勤工程学院, 2008.
[12] 胡文超, 杜杨, 张培理. 油气惰化抑爆研究进展[J]. 辽宁化工, 2019, 48(8): 808-810
[13] 隋顺彬, 康建功, 孙建虎. 泡沫铝在油气爆炸荷载作用下的吸能减冲击性能[J]. 爆破, 2011, 28(2): 30-34