您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>前馈反馈Smith预估模糊PID组合温度控制算法

前馈反馈Smith预估模糊PID组合温度控制算法

1709    2020-11-24

免费

全文售价

作者:张皓1,2, 高瑜翔1,2

作者单位:1. 成都信息工程大学通信工程学院,四川 成都 610225;
2. 气象信息与信号处理四川省高校重点实验室,四川 成都 610225


关键词:前馈控制;Smith预估;模糊PID


摘要:

针对单纯反馈与传统PID算法的温度控制系统存在调节时间较长、超调量大、参数调整繁琐、干扰影响严重、闭环稳定性差的问题。利用前馈控制原理,将干扰测量出来并通过前馈控制器,调节控制量大小,消除干扰影响。引入Smith预估补偿器,抵消特征方程中的滞后项$ {e}^{-\tau s} $,保证大滞后系统的闭环稳定性。结合模糊PID算法,实现参数自整定,降低超调量,减少调节时间。使用Matlab中的Simulink工具箱进行仿真验证后结果表明:前馈反馈Smith预估模糊PID组合控制算法不仅消除干扰的影响,还保证大滞后系统的闭环稳定性,使超调量$ \mathrm{\sigma } $降为0,调节时间ts减少518.02 s、上升时间tr减少90.43 s、延迟时间td减少9.6 s,使整个系统的响应速度更快,稳定性更强。


Temperature control algorithm combined the feedforward feedback with Smith predictor and fuzzy PID
ZHANG Hao1,2, GAO Yuxiang1,2
1. College of Communication Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
2. Meteorological Information and Signal Processing Key Laboratory of Sichuan Education Institutes, Chengdu 610225, China
Abstract: Traditionally, the temperature control system uses a classic PID control algorithm which requires complicated parameter adjustment process and long adjustment time. It also holds the limitation of large overshoot, severe interference effects, and poor closed-loop stability. One approach to solving these problems is to utilize feedforward control and predictive compensator to compensate for the disturbance and eliminate control lagging. In this research work, the Smith predictive compensator was introduced to cancel the lag term in the characteristic equation to ensure the closed-loop stability of the large lag system. Meanwhile, combined with the fuzzy PID algorithm, it can not only realize parameter self-tuning but also reduce overshoot and adjustment time. The simulation results using Simulink toolbox in Matlab show that the feedforward feedback Smith predictive fuzzy PID combination control algorithm eliminates the influence of interference, and ensures the closed-loop stability of the large lag system, reducing the overshoot to 0, the adjustment time is reduced by 518.02 s, the rise time is reduced by 90.43 s, and the delay time is reduced by 9.6 s so that the response speed of the entire system is faster and the stability is stronger than before.
Keywords: feedforward control;Smith predictor;fuzzy PID
2020, 46(11):132-138,168  收稿日期: 2020-03-26;收到修改稿日期: 2020-04-24
基金项目:
作者简介: 张皓(1992-),男,四川雅安市人,硕士研究生,专业方向为先进控制与智能控制理论、嵌入式物联网技术
参考文献
[1] 张宝峰, 张燿, 朱均超, 等. 基于模糊PID的高精度温度控制系统[J]. 传感技术学报, 2019, 32(9): 1425-1429
[2] WANG J, AN D, LOU C, et al. Application of fuzzy-PID controller in heating ventilating and air-conditioning system[C]//international conference on mechatronics and automation, 2006: 2217-2222.
[3] 骆东松, 孙冠琼. 基于模糊控制的真空退火炉温度控制系统[J]. 控制工程, 2019, 26(4): 625-630
[4] WENJIE Z, QINGFENG J, JINSEN X, TAO Y. A fuzzy-PID composite controller for core power control of liquid molten salt reactor[J]. Annals of Nuclear Energy, 2020, 139: 107234-107239
[5] ESFANDYARI M, FANAEI M A, ZOHREIE H, et al. Adaptive fuzzy tuning of PID controllers[J]. Neural Computing and Applications, 2013, 23(1): 19-28
[6] CHIANG W, LUO W, WANG F, et al. Temperature control scheme using hot-gas bypass for a machine tool oil cooler[J]. Journal of Mechanical Science and Technology, 2018, 32(3): 1391-1396
[7] ZHANG D, ZHANG H, SUN T, et al. Monitor automatic gauge control strategy with a Smith predictor for steel strip rolling[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, 15(6): 827-832
[8] 赵巍, 李房云. 基于预估模糊PID的冰蓄冷空调控制系统[J]. 现代电子技术, 2019, 42(20): 26-28+32
[9] 平玉环, 管志敏, 李宗耀. 基于Smith预估的模糊自适应主汽温控制系统[J]. 中国电力, 2018, 51(11): 9-14
[10] LU L, YINSHI L, HE Y L. Flexible and efficient feedforward control of concentrating solar collectors[J]. Applied Thermal Engineering, 2020, 171: 115053-115097
[11] 杨军, 李军, 宋壮, 等. 风洞温度控制系统的前馈模糊PID控制研究[J]. 控制工程, 2018, 25(10): 1843-1848
[12] LUO Q, AN A, ZHANG H, et al. Non-linear performance analysis and voltage control of MFC based on feedforward fuzzy logic PID strategy[J]. Journal of Central South University, 2019, 26(12): 3359-3371
[13] 王再英, 刘淮霞, 陈毅静. 过程控制系统与仪表[M]. 北京: 机械工业出版社, 2006: 221, 229.
[14] 杨娜, 武昆. 基于双模糊PID的食品包装机热封温度控制研究[J]. 包装工程, 2019, 40(17): 187-193
[15] 张申宇, 马天兵, 罗松松, 等. 基于模糊自适应PID真空室温度控制的研究[J]. 组合机床与自动化加工技术, 2019(11): 92-95
[16] 曲兴田, 王学旭, 孙慧超, 等. 熔融沉积成型技术3D打印机加热系统的模糊自适应PID控制[J]. 吉林大学学报(工学版), 2020, 50(1): 77-83
[17] 王军, 高秀梅, 宋潇潇, 等. 自动控制原理[M]. 北京: 机械工业出版社, 2012: 42.