您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>氨基化氧化石墨烯-水泥基复合材料的制备与研究

氨基化氧化石墨烯-水泥基复合材料的制备与研究

1388    2020-11-24

免费

全文售价

作者:孙小菊

作者单位:郑州升达经贸管理学院建筑工程学院,河南 郑州 451191


关键词:氨基化;氧化石墨烯;水泥;抗折强度;抗压强度


摘要:

该文制备氨基化氧化石墨烯,研究不同掺量下氧化石墨烯和氨基化氧化石墨烯对水泥强度的影响。采用X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)和透射电镜(TEM)对材料结构进行表征。结果表明,与对照水泥相比,掺杂0.15 %氧化石墨烯的水泥28 d抗折和抗压强度分别为7.65 MPa和64 MPa,提高10.87%和21.44%;而掺杂0.15 %氨基化氧化石墨烯的水泥28 d抗折和抗压强度分别为7.98 MPa和72.81 MPa,提高15.65%和38.16%;微观分析表明,氨基化氧化石墨烯促进水泥内部形成紧密交联的粗柱晶体,提高水泥的力学性能。


Research and preparation of NH2-GO cement-based composite
SUN Xiaoju
School of Architectural Engineering, ZhengZhou Shengda Econnomics and Mangement College, Zhengzhou 451191, China
Abstract: In this study, NH2-functional graphene oxide (NH2-GO) was prepared, effects of GO and NH2-GO on the cement at different dosage were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) were used to characterize the material structure. The results showed that the 28 d flexural strength and compressive strength of the cement doped with 0.15% GO were 7.65 MPa and 64 MPa, increased by 10.87% and 21.44%, respectively. The 28 d flexural strength and compressive strength of cement doped with 0.15% NH2-GO were 7.98 MPa and 72.81 MPa, increased by 15.65% and 38.16%, respectively. The morphological analysis showed that NH2-GO promoted the formation of cross-linked hydrates in the cement matrix, which improved the mechanical properties of the cement.
Keywords: NH2-functional;graphene oxide;cement;flexural strength;compressive strength
2020, 46(11):158-162  收稿日期: 2020-03-26;收到修改稿日期: 2020-05-03
基金项目: 河南省科技攻关项目(172102310253)
作者简介: 孙小菊(1984-),女,河南驻马店市人,讲师,硕士,主要从事桥梁、隧道的施工及建筑材料优化的研究
参考文献
[1] SYLOVANYUK V P, YUKHYM R Y, IVANTYSHYN N A, et al. Prediction of the crack resistance of cement stone and fibrous concrete[J]. Materials Science, 2016, 51(4): 570-575
[2] NGUYỄN H H, CHOI J I, SONG K I, et al. Self-healing properties of cement-based and alkali-activated slag-based fiber-reinforced composites[J]. Construction and Building Materials, 2018, 165: 801-811
[3] RUPASINGHE M, NICOLAS S R, MENDIS P, et al. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste[J]. Cement and Concrete Composites, 2017, 80: 17-30
[4] GARCÍA-MACÍAS E, D'ALESSANDRO A, CASTRO-TRIGUERO R, et al. Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites[J]. Composites Part B: Engineering, 2017, 108: 451-469
[5] ALATAWNA A, BIRENBOIM M, NADIV R, et al. The effect of compatibility and dimensionality of carbon nanofillers on cement composites[J]. Construction and Building Materials, 2020, 232: 117141
[6] PEYVANDI A, SOROUSHIAN P. Structural performance of dry-cast concrete nanocomposite pipes[J]. Materials and Structures, 2015, 48(1/2): 461-470
[7] GDOUTOS E E, KONSTA-GDOUTOS M S, DANOGLIDIS P A. Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study[J]. Cement and Concrete Composites, 2016, 70: 110-118
[8] LI W, LI X, CHEN S J, et al. Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste[J]. Construction and Building Materials, 2017, 136: 506-514
[9] SHANG Y, ZHANG D, YANG C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Construction and Building Materials, 2015, 96: 20-28
[10] 吕生华, 孙立, 张佳, 等. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料[J]. 材料导报, 2017, 31(23): 78-84
[11] 吕生华, 崔亚亚, 孙婷, 等. 氧化石墨烯对水泥净浆流动度及水泥石结构和性能的影响[J]. 功能材料, 2015, 46(4): 4051-4056
[12] GONG K, PAN Z, KORAYEM A H, et al. Reinforcing effects of graphene oxide on portland cement paste[J]. Journal of Materials in Civil Engineering, 2014, 27(2): A4014010
[13] PARK S, LEE K, BOZOKLU G, et al. Graphene oxide papers modified by divalent ions-Enhancing mechanical properties via chemical cross-linking[J]. Acs Nano, 2008, 2(3): 572-578
[14] ZHOU C, LI F, HU J, et al. Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes[J]. Construction and Building Materials, 2017, 134: 336-345
[15] JIAO Q, ZHANG S, WANG J, et al. In situ preparation of PI/amino-functionalized graphene composites and their properties[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2015, 23(8): 680-686
[16] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc, 1958, 208: 1334-1339