您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>地下热式渗流传感器的设计与研究

地下热式渗流传感器的设计与研究

1315    2020-12-22

免费

全文售价

作者:余明炜1, 李青1, 童仁园1, 陈华民2

作者单位:1. 中国计量大学机电工程学院,浙江 杭州 310018;
2. 金华市地质环境监测站,浙江 金华 321000


关键词:渗流流速测量;热传递;温度测量;实时监测


摘要:

针对当前渗流测量领域中存在渗流流速测量精度不高,无法进行长期测量等问题,提出一种新的渗流测量方法,该方法是对流经微小管径内的渗流直接进行加热,使用Pt100测量加热前后温度变化,以此来计算渗流流速。在该方法的基础上,设计制作一款地下热式渗流测量传感器,该传感器使用Lora模块来完成数据的远程无线传输,实现实时在线监测,使用太阳能供电系统来达到良好的能量供给,维持传感器长期稳定的工作。通过在砂土中对设计的传感器进行渗流测速实验,证明该传感器能够有效地对渗流流速进行测量,测量范围在0.000 1~0.001 3 m/s,最大相对误差绝对值为6.72%。


Design and research of underground thermal seepage sensor
YU Mingwei1, LI Qing1, TONG Renyuan1, CHEN Huamin2
1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China;
2. Jinhua City Geological Environment Monitoring Station, Jinhua 321000, China
Abstract: Aiming at the current seepage measurement field, there is a problem that the measurement accuracy of seepage velocity is not high and it can not be measured for a long time, a new seepage measurement method is proposed. This method is to directly heat the seepage flowing through the small pipe diameter, and use the Pt100 temperature measuring resistor to measure the temperature change before and after heating, so as to calculate the seepage flow rate. On the basis of this method, an underground thermal seepage measurement sensor was designed and manufactured. The sensor uses the Lora module to complete the remote wireless transmission of data, realizes real-time online monitoring, uses a solar power system to achieve a good energy supply, and maintains the long-term stable operation of the sensor. Through the seepage velocity measurement experiment on the designed seepage sensor in sand, it is proved that the sensor can effectively measure the seepage velocity, the measurement range is 0.000 1-0.001 3 m/s, and the maximum measurement error is about 6.72%.
Keywords: seepage flow rate measurement;heat transfer;temperature measurement;real time monitoring
2020, 46(12):86-91  收稿日期: 2020-11-07;收到修改稿日期: 2020-11-30
基金项目: 国家重点研发计划课题(2017YFC0804604);浙江省重点研发计划项目(2018C03040)
作者简介: 余明炜(1995-),男,浙江杭州市人,硕士研究生,专业方向为检测技术
参考文献
[1] 刘长吉, 陈建生, 陈亮, 等. 库坝区地下水渗流场模式识别模型研究[J]. 岩石力学与工程学报, 2009, 28(l): 2808-2814
[2] 李刚, 宋先海. 渗压计在渗流监测中的误差分析及对策[J]. 人民长江, 2010, 41(15): 59-62
[3] 王庆. 巧用达西定律促进《渗流力学》的学习[J]. 教育现代化, 2019, 6(24): 206-208
[4] 王赵汉. 基于分布式光纤测温技术的土石堤坝渗流监测方法研究[D]. 西安: 西安理工大学, 2019.
[5] BLUME T, KRAUSE S, MEINIKMANN K, et al. Upscaling lacustrine groundwater discharge rates by fiber-optic distributed temperature sensing[J]. Water Resources Research, 2013, 49(12): 7929-7944
[6] 李雯. 热式质量流量计的设计[D]. 杭州: 浙江大学, 2007.
[7] 黄超, 毛谦敏, 李中阳. 基于双速度探头的微小流量热式气体流量计[J]. 仪表技术与传感器, 2019(4): 40-43
[8] 王利恒, 李昌禧. 热式气体流量计组分补偿方法研究[J]. 仪器仪表学报, 2009, 30(11): 2390-2394
[9] 朱小会, 袁玉霞, 吴紫君. 基于ARM的热式空气流量计的设计[J]. 仪表技术与传感器, 2019(10): 54-56, 60
[10] 刘宇韬,盛文娟. 基于AdaBoost-LSSVM的纤维复合材料损伤识别[J]. 中国测试, 2020, 46(9): 148-153
[11] RADETIĆ R, PAVLOV-KAGADEJEV M, MILIVOJEVIĆ N. The analog linearization of Pt100 working characteristic[J]. Serbian Journal of Electrical Engineering, 2015, 12(3): 345-357
[12] NITHIARASU P,SUJATHA K S, RAVINDRAN K, et al. Non-Darcy natural convection in a hydrodynamically and thermally anisotropic porous medium[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 188(1): 413-430
[13] 刘杰. 岩体裂隙网络二维非线性渗流特性与模型[D]. 济南: 山东大学, 2019.
[14] 郭鑫. 测量地下水渗流速度及温度加热探针性能研究[D]. 天津: 天津大学, 2018.
[15] 严珺凡. 岩土体渗流场分布式光纤监测技术研究[D]. 南京: 南京大学, 2016.