您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>用光热反射热成像测量GaN HEMT稳态温度

用光热反射热成像测量GaN HEMT稳态温度

932    2021-10-27

免费

全文售价

作者:翟玉卫, 刘岩, 李灏, 丁晨, 丁立强, 吴爱华

作者单位:中国电子科技集团公司第十三研究所,河北 石家庄 050051


关键词:光热反射热成像;GaN HEMT;温度分布;稳态


摘要:

为测量GaN HEMT表面GaN微小结构稳态条件下的温度分布,研发光热反射热成像实验装置并对典型的GaN HEMT进行温度测试。该实验装置以365 nm紫外LED作为光源,具备405 nm的空间分辨率。测试结果显示:实验装置能有效分辨被测件栅极与漏极之间GaN材料的温度分布,以热成像的方式测得被测件GaN材料区域的表面温度分布。在滤除噪声影响后,在14 W直流功耗下对GaN材料测温结果与国外商用仪器相比误差约为2 ℃。该光热反射实验装置可实现对GaN HEMT进行亚微米量级高空间分辨率稳态温度分布测试。


Test the temperature of GaN HEMT under steady state using thermoreflectance thermography
ZHAI Yuwei, LIU Yan, LI Hao, DING Chen, DING Liqiang, WU Aihua
The 13th Research Institute, CETC, Shijiazhuang 050051, China
Abstract: In order to measure the temperature distribution of the micro GaN structure on the surface of GaN HEMT under steady state, a thermo reflectance imaging experimental setup was developed. With a 365 nm UV LED as light source, the spatial resolution of the experimental setup is 405 nm. The test results showed that the experimental setup can resolve the temperature distribution on GaN area between gate and drain, the surface temperature distribution on GaN area of the DUT was captured in the form of thermal imaging. There was about 2 ℃ error related to the results measured by a commercial thermo reflectance imaging setup under 14 W DC power dissipation for GaN material. The thermo reflectance experimental setup was capable of testing the surface temperature distribution of GaN HEMT with submicron-scale spatial resolution.
Keywords: thermoreflectance thermography;GaN HEMT;thermal distribution;steady state
2021, 47(10):41-45  收稿日期: 2020-09-26;收到修改稿日期: 2020-11-22
基金项目:
作者简介: 翟玉卫(1983-),男,河北石家庄市人,高级工程师,硕士,主要从事半导体器件热可靠性检测与分析方面的研究
参考文献
[1] KUBALL M, POMEROY J W. A review of Raman thermography for electronic and opto-electronic device measurement with sub-micron spatial and nanosecond temporal resolution[J]. IEEE Trans. Electron and Materials Reliability, 2016, 16(4): 1-19
[2] FARZANEH M, MAIZE K, LÜERßEN D, et al. CCD-based thermoreflectance microscopy: Principles and applications[J]. Journal of Physics: D, 2009, 42(14): 1-20
[3] 杨丽媛. 氮化镓基HEMT器件高场退化效应与热学问题研究[D]. 西安: 西安电子科技大学, 2013.
[4] KOMAROV P L, BURZO M G, RAAD PE. A thermoreflectance thermography system for measuring the transient surface temperature field of activated electronic devices[C]//Proceedings of IEEE 22nd Semiconductor Thermal Measurement and Management Symposium, 2006.
[5] 梁法国, 翟玉卫, 吴爱华. 用显微红外热成像技术分析功率器件可靠性[J]. 微纳电子技术, 2011, 48(5): 338-342
[6] BACZKOWSKI L, CARISETTI D, JACQUET J C, et al. Thermal characterization of high power AlGaN/GaN HEMTs using infra red microscopy and thermoreflectance [C]// Proceedings of 20th International Workshop on Thermal Investigations of ICs & Systems, 2014.
[7] KENDIG D, PAVKUDIS G, GRAHAM S, et al. UV Thermal Imaging of RF GaN Devices with GaN Resistor Validation[C]//Proceedings of 91th ARFTG Microwave Measurement Conference, Philadelphia, PA, USA, pp. 1-4, Jun. 2018.
[8] MAIZE K, PAVLIDIS G, HELLER E, et al. High resolution and thermal characterization and simulation of power AlGaN/GaN HEMT using micro-Raman thermography and 800 picosecond transient thermoreflectance imaging[C]//Proceedings of Compound Semiconductor Integrated Circuit Symposium, 2014.
[9] 翟玉卫, 梁法国, 郑世棋, 等. 用热反射测温技术测量GaN HEMT的瞬态温度[J]. 半导体技术, 2016, 41(1): 76-80
[10] PAVLIDIS G, KENDIG D, YATES L, et al. Improving the transient thermal characterization of GaN HEMTs [C]// Proceedings of 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2018.
[11] BACKOWSKI L, JACQUET J C, JARDEL O, et al. Thermal characterization using optical methods of AlGaN/GaN HEMTs on SiC substrate in RF operating conditions[J]. IEEE Trans. Electron Devices, 2015, 62(12): 3992-3998
[12] BHOJANI R, KOWALSKY J, LUTZ J, et al. Observation of current filaments in IGBTs with thermoreflectance microscopy[C]//Proceedings of the 30th International Symposium on Power Semiconductor Devices & ICs, 2018.
[13] TADJER M, RAAD P, KOMAROV P, et al. Electrothermal evaluation of AlGaN/GaNMembrane high electron mobility transistorsby transient thermoreflectance[J]. Journal of the ELECTRON DEVICES SOCIETY, 2018, 6: 922-930
[14] URBONAS J, MATEI C, AAEN P H. Transient and steady-state thermal measurements of GaN-on-SiC HEMT transistors under realistic microwave drive[C]//Proceedings of 92nd ARFTG Microwave Measurement Conference, 2019.
[15] 刘岩, 翟玉卫, 李灏, 等. 基于相机的光反射热成像误差分析[J]. 计量学报, 2020, 41(5): 558-562
[16] 翟玉卫, 郑世棋, 刘岩, 等. 热反射测温中基于随机共振的微小信号测量[J]. 计量学报, 2019, 40(4): 618-624
[17] 翟玉卫, 梁法国, 刘岩, 等. 空间分辨力对半导体器件光学测温结果的影响[J]. 红外, 2016, 37(11): 36-41
[18] PAVLIDISG, YATES L, KENDIG D, et al. Thermal performance of GaN/Si HEMTs usingnear-bandgapthermoreflectance imaging[J]. IEEE Transactions on Electron Devices, 2020, 67(3): 822-827
[19] KENDIG D, HOHENSEE G, PEK E, et al. Accurate thermoreflectance imaging of nano-features using thermal decay[C]//Proceedings of the2017 16th IEEE ITHERM Conference, 2017.