您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>T-history外推法求解温度高于90 ℃相变材料的热物性研究

T-history外推法求解温度高于90 ℃相变材料的热物性研究

983    2021-10-27

免费

全文售价

作者:马超1, 冀志江1, 王静1, 王永超1, 解帅1, 吴渝1, 赵聪慧2

作者单位:1. 中国建筑材料科学研究总院有限公司 绿色建筑材料国家重点实验室,北京 100024;
2. 阜平县职业技术教育中心,河北 保定 073200


关键词:T-history外推法;热物性;赤藓糖醇;潜热;热导率


摘要:

相变材料的热物性对其筛选与应用至关重要。通常情况下,原始的T-history法可以求解相变温度低于90 ℃的相变材料的热物性,且简单方便、测试样品体积大,接近于实际相变过程。为了求解相变温度高于90 ℃的相变材料的热物性,对原始T-history法进行了改进,并将其命名为T-history外推法(THEM)。它以纯水为参考材料,将纯水的降温曲线拟合外推至相变材料的初始冷却温度,从而求解温度高于90 ℃的相变材料的热物性。选取熔点为118 ℃的赤藓糖醇,基于T-history外推法进行实验验证,结果表明,固体赤藓糖醇的导热系数与参考值吻合良好,潜热的计算值与DSC测试值的误差控制在5%以内。改进后的T-history外推法可以用于求解温度高于90 ℃相变材料的热物性。


Research on calculation of the thermophysical properties of phase change materials with temperature above 90 ℃ using T-history extrapolation method
MA Chao1, JI Zhijiang1, WANG Jing1, WANG Yongchao1, XIE Shuai1, WU Yu1, ZHAO Conghui2
1. State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China;
2. Fuping Vocational and Technical Education Center, Baoding 073200, China
Abstract: The thermophysical properties of phase change materials (PCMs) are crucial for their screening and application. In general, the original T-history method is a simple method to determine the properties of the PCMs with phase change temperature below 90 ℃. In this paper, the original T-history method has been improved and named as T-history extrapolation method (THEM) in order to measure the PCMs above 90 ℃. The THEM can determine the thermophysical properties of the PCMs with a temperature higher than 90 ℃ because the cooling curve of pure water taken as the reference material can be fitted and extrapolated to initial cooling temperature of PCMs. The thermophysical properties of erythritol, with melting temperature around 118 ℃, are calculated by the THEM. The results indicate that the thermal conductivity of solid erythritol is in good agreement with reference value and the error between the calculated value of latent heat and the measured by DSC is controlled within 5%. The T-history extrapolation method can be used to determine the properties of the PCMs with a temperature above 90 ℃.
Keywords: T-history extrapolation method (THEM);thermophysical properties;erythritol;latent heat;thermal conductivity
2021, 47(10):52-58  收稿日期: 2020-11-21;收到修改稿日期: 2021-01-12
基金项目: “十三五”国家重点研发计划课题(2016YFC0700903)
作者简介: 马超(1994-),男,河北邢台市人,硕士,主要从事相变储能材料研究
参考文献
[1] 胡乔良, 李伟, 郜宁, 等. 基于供热负荷的吸收式热泵供热机组变工况性能分析[J]. 中国测试, 2020, 46(11): 163-168
[2] ZHANG Y P, JIANG Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science and Technology, 1999, 10(3): 201-205
[3] 何雨翔, 冀志江, 陆永平, 等. 基于T-history法确定相变材料的相变区间和相变焓[J]. 中国测试, 2019, 45(1): 47-55
[4] GUNTHER E, HIEBLER S, MEHLING H, et al. Enthalpy of phase change materials as a function of temperature: Required accuracy and suitable measurement methods[J]. International Journal of Thermophysics, 2009, 30(4): 1257-1269
[5] HONG H, KIM S K, KIM Y-S. Accuracy improvement of T-history method for measuring heat of fusion of various materials[J]. International Journal of Refrigeration, 2004, 27(4): 360-366
[6] KRAWARITIS E D, TZIVANIDIS C, ANTONOPOULOS K A. Experimental determination of the effective thermal capacity function and other thermal properties for various phase change materials using the thermal delay method[J]. Applied energy, 2011, 88(12): 4459-4469
[7] GUNASEKARA S N, PAN R, CHIU J N, et al. Polyols as phase change materials for surplus thermal energy storage[J]. Applied Energy, 2016, 162: 1439-1452
[8] 刘旻瑞, 孙志高, 李成浩, 等. 硬脂酸-十八醇二元复合相变材料性能研究[J]. 太阳能学报, 2019, 40(6): 1553-1559
[9] WANG W L, HE S Q, GUO S P, et al. A combined experimental and simulation study on charging process of erythritol–HTO direct-blending based energy storage system[J]. Energy Conversion and Management, 2014, 83: 306-313
[10] HOHLEIN S, KONIG-HAAGEN A, BRUGGEMANN D. Thermophysical characterization of MgCl(2). 6H(2)O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES)[J]. Materials, 2017, 10(4): 444
[11] 章学来, 丁锦宏, 罗孝学, 等. 纳米二氧化钛-赤藻糖醇储能体系实验研究[J]. 制冷学报, 2016, 37(1): 70-76
[12] GAO L H, ZHAO J, AN Q S, et al. Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container[J]. Applied Thermal Engineering, 2017, 113: 858-866
[13] ZHI C L, QIANG Z, GAO H W. Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material[J]. International Journal of Heat and Mass Transfer, 2015, 80: 653-659
[14] INAGAKI T, ISHIDA T. Computational analysis of sugar alcohols as phase-change material: Insight into the molecular mechanism of thermal energy storage[J]. Journal of Physical Chemistry C, 2016, 120(15): 7903-7915
[15] LOPES J A J, NUNES S C, RAMOS S M, et al. Erythritol: Crystal growth from the melt[J]. International Journal of Pharmaceutics, 2010, 388(1-2): 129-135
[16] GUNASEKARA S N, IGNATOWICZ M, CHIU J N, et al. Thermal conductivity measurement of erythritol, xylitol, and their blends for phase change material design: A methodological study[J]. International Journal of Energy Research, 2019, 43(5): 1785-1801
[17] HORROCKS J K, MCLAUGHLIN E. Thermal conductivity of simple molecules in the condensed state[J]. Transactions of the Faraday Society, 1960, 56(197): 206-212
[18] 仇明华, 刘万强, 岳明, 等. 分子结构力学有限元分析方法估算多元醇液体热导率[J]. 分子科学学报, 2018, 34(1): 1-8