您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>RV减速器行星架孔径在线自动测量技术研究

RV减速器行星架孔径在线自动测量技术研究

920    2021-11-23

免费

全文售价

作者:樊寅斌1,2, 李兵2

作者单位:1. 中国工程物理研究院计量测试中心,四川 绵阳 621900;
2. 西安交通大学 机械制造系统工程国家重点实验室,陕西 西安 710049


关键词:差压式气动测量;孔径;在线测量;不确定度评定


摘要:

针对工业机器人RV减速器行星架圆周孔孔径在线测量问题,研究基于差压式气动测量的孔径比较式测量方案;基于测量方案和模块化设计思想,设计双截面八喷嘴气路结构、运动机构和电气系统,并研制出孔径在线自动测量仪,实现测量过程的自动化和数据采集实时化。系统误差分析结果表明气动测头结构引入误差小于0.156 μm,生产线环境温度引入误差小于0.39 μm。在重复性测量条件下进行测量试验,试验结果表明孔径在线自动测量仪重复性标准差小于0.22 μm,测量误差小于1.3 μm,测量结果不确定度0.8 μm,具有较高准确性和良好重复性。单个零件测量节拍小于30 s,测量效率高,满足生产线上的测量要求。


Research on the on-line automatic measuring technology for aperture of the planetary carrier of RV reducer
FAN Yinbin1,2, LI Bing2
1. Metrology and Testing Center, China Academy of Engineering Physics, Mianyang 621900, China;
2. State Key Laboratory of Mechanism Manufacture System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract: The paper is aimed at the online measurement of the circumferential hole diameter of the planetary carrier of the industrial robot RV reducer, an on-line automatic aperture measuring instrument based on differential pressure pneumatic measurement is proposed. Based on the measuring scheme and the modularization idea, the movement mechanism, electrical system and pneumatic structure which has double-section and eight nozzles were designed. An on-line automatic aperture measuring instrument was developed, which realized the automation of the measurement process and real-time data collection. The system error analysis result shows that the error introduced by the pneumatic probe structure is less than 0.156 μm, and the error introduced by production line environment temperature is less than 0.39 μm. The measurement experiment was carried out under the condition of repeatability measurement. The experimental results showed that the repeatability of the instrument was less than 0.22 μm, the measurement error was less than 1.3 μm, and the uncertainty of measurement results was 0.8 μm, which has high measurement repeatability and accuracy. The measurement cycle of a single part is less than 30 s, and the measurement efficiency is high, which is suitable for the measurement requirements of the production line.
Keywords: differential pressure pneumatic measurement;diameter of the hole;online measurement;uncertainty evaluation
2021, 47(11):85-93  收稿日期: 2021-05-28;收到修改稿日期: 2021-07-03
基金项目: 国家重点研发计划 (2017YFB1300704)
作者简介: 樊寅斌(1995-),男,甘肃平凉市人,助理工程师,硕士研究生,研究方向为几何量精密测试技术
参考文献
[1] 李崎岩. 大深径比孔多几何量集成式测量技术[D]. 大连: 大连理工大学, 2020.
[2] 吴呼玲. 多尺寸一体化新型塞规设计[J]. 煤矿机械, 2018, 39(10): 108-110
[3] 朱沙, 杨杰斌, 陈世超, 等. 数控机床在线测量大直径技术研究[J]. 中国测试, 2012, 38(4): 13-15
[4] BUSCHKE DG, RESTO P, SCHUMACHER N, et al. Microfluidic sorting of microtissues[J]. Biomicrofluidics, 2012, 6(1): 14116
[5] 乔帅. 在线气动测径仪的研究与开发[D]. 郑州: 郑州大学, 2015.
[6] 程保良. 气动塞规法检测精密小孔孔径技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[7] 陈晓雷, 王旭, 王星星, 等. 基于嵌入式SP C的气动量仪系统[J]. 湖北民族学院学报(自然科学版), 2020, 38(1): 88-92
[8] 林志宇, 刘桂雄, 汤少敏, 等. 机器人精密减速器单工位测试流程优化方法[J]. 中国测试, 2019, 45(6): 19-23
[9] 倪勇. 气动量仪的参数优化设计[D]. 合肥: 合肥工业大学, 2009.
[10] 叶宗茂, 刘沉前. 孔径气动测头在动力总成机加件生产中的应用[J]. 金属加工(冷加工), 2018(10): 3-7
[11] 郑红. RV减速器摆线轮零件加工工艺设计探讨[J]. 价值工程, 2015, 23: 62-64
[12] 张立强, 包燕平, 王敏等. GCr15钢的热膨胀系数[J]. 钢铁研究学报, 2012, 24(9): 40-44
[13] 陈姗姗. 工业机器人关节用RV减速器运动学分析及关键零部件制造工艺探索[D]. 宁夏: 宁夏大学, 2015.
[14] 马泳涛, 张建立, 李顿, 等. 均匀温度场下零件热变形行为的研究[J]. 矿山机械, 2010, 38(10): 31-33