您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>Au/Ag双金属纳米团簇的功能化及其传感应用

Au/Ag双金属纳米团簇的功能化及其传感应用

1680    2022-09-24

免费

全文售价

作者:邓文清1, 王滨1, 王忠1, 张苏敏1, 潘义1, 黄科2

作者单位:1. 中国测试技术研究院,四川 成都 610056;
2. 四川师范大学化学与材料科学学院,四川 成都 610066


关键词:Au/Ag纳米团簇;功能化;分析传感;金属离子;生物分子


摘要:

金属纳米团簇(NCs,尺寸通常小于2 nm)是一类新型的发光纳米材料,由于具有稳定性高、生物相容性好、毒性低等优点成为分析传感领域研究热点。 Au/Ag双金属纳米团簇由于“银效应”使其比传统的AuNCs和AuNCs具有更高的量子产率和更强的稳定性,具有更广阔的应用前景。该文综述近年来Au/Ag双金属纳米团簇的表面功能化及其在分析传感方面的研究进展和分析原理,具体内容包括肽链、蛋白质、DNA对Au/Ag纳米团簇的表面功能化以及功能化的纳米团簇对金属离子、生物小分子和生物酶的分析检测应用。最后总结当前Au/Ag纳米团簇的合成及其在传感分析方面面临的挑战,并对今后的发展进行展望。希望能为Au/Ag纳米团簇在生物传感领域进一步发展提供参考。


Functionalization and sensing application of Au/Ag bimetallic nanoclusters
DENG Wenqing1, WANG Bin1, WANG Zhong1, ZHANG Sumin1, PAN Yi1, HUANG Ke2
1. National Institute of Measurement and Testing Technology, Chengdu 610056, China;
2. College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
Abstract: Metal nanoclusters(NCs,usually smaller than 2 nm in size), as a new type of luminescent nanomaterials, have become a research hotspot in the field of analytical sensing due to Due to their high stability, good biocompatibility, and low toxicity. Au/Ag bimetallic nanoclusters have higher quantum yield and stronger stability than traditional AuNCs and AuNCs due to the “silver effect”, and have a broader application prospect. In this paper, the surface functionalization of Au/Ag bimetallic nanoclusters in recent years and its research progress and analysis principle in analytical sensing are reviewed. This paper specifically introduced the functionalization of peptide chains, proteins, and DNA for nanoclusters, and its application in the analysis of metal ions, biological small molecules, and biological enzymes. Finally, the current synthesis of Au/Ag nanoclusters and their challenges in sensing detection are summarized, and an expectation for the future development has been made. It is hoped to provide reference for the further development of Au/Ag nanoclusters in the field of biosensing.
Keywords: Au/Ag NCs;functional;analytical sensing;metal ion;biomolecules
2022, 48(9):53-62  收稿日期: 2021-03-24;收到修改稿日期: 2021-05-27
基金项目: 国家标准物质资源共享平台资助项目(APT2002-1)
作者简介: 邓文清(1992-),女,四川广安市人,助理工程师,硕士,主要从事分析检测工作
参考文献
[1] HU L H, ZHU J J. Noble metal nanoclusters (NCs): synthesis and biological applications[J]. The World Scientific Encyclopedia of Nanomedicine and Bioengineering I, Noble Metal Nanoparticles for Biomedical Applications vol 1, World Scientific, 2016: 37-66
[2] KONG L, CHU X, WANG C, et al. D-Penicillamine-coated Cu/Ag alloy nanocluster superstructures: aggregation-induced emission and tunable photoluminescence from red to orange[J]. Nanoscale, 2018, 10(4): 1631-1640
[3] ZHAO Z, LI Y. Developing fluorescent copper nanoclusters: Synthesis, properties, and applications[J]. Colloids Surf B Biointerfaces, 2020, 195: 111244
[4] SHANG L, DONG S, NIENHAUS G U, et al. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications[J]. Nano Today, 2011, 6(4): 401-418
[5] 田野, 娄虎, 姬彦飞,等. 荧光银纳米团簇的生物合成及其在痕量六价铬检测中的应用[J]. 微生物学报, 2021,61(3):740-749.
[6] LYU D, LI J, WANG X. Cationic-Polyelectrolyte-Modified Fluorescent DNA-Silver Nanoclusters with Enhanced Emission and Higher Stability for Rapid Bioimaging[J]. Anal Chem, 2019, 91(3): 2050-2057
[7] 郑琤, 李诗华, 宋晓荣. 金属纳米团簇在生物医学领域的研究进展[J]. 福州大学学报(自然科学版), 2020, 48(03): 395-403
[8] SHOJAEIFARD Z, HEIDARI N, HEMMATEENEJAD B, et al. Bimetallic AuCu nanoclusters-based florescent chemosensor for sensitive detection of Fe3+ in environmental and biological systems[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 209: 202-208
[9] WANG J, ZHANG Z, GAO X, et al. A single fluorophore ratiometric nanosensor based on dual-emission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection[J]. Sensors and Actuators B:Chemical, 2019, 282: 712-718
[10] JANA J, ACHARYYA P, NEGISHI Y, et al. Evolution of silver-mediated, enhanced fluorescent Au-Ag nanoclusters under UV activation: a platform for sensing[J]. ACS Omega, 2018, 3(3): 3463-3470
[11] YAN J, TEO B K, ZHENG N. Surface chemistry of atomically precise coinage-metal nanoclusters: from structural control to surface reactivity and catalysis[J]. Acc Chem Res, 2018, 51(12): 3084-3093
[12] LIU J, LAN J, YANG L, et al. PtM (M = Fe, Co, Ni) Bimetallic nanoclusters as active, methanol-tolerant, and stable catalysts toward the oxygen reduction reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6541-6549
[13] ZHAI Q, XING H, ZHANG X, et al. Enhanced electrochemiluminescence behavior of Au-Ag bimetallic nanoclusters and its sensing application for Hg(II)[J]. Analytical Chemistry, 2017, 89(14): 7788-7794
[14] YIN M, CHEN W, LIU Y, et al. AuxAg1–x nanocomposites with 40-fold emission enhancement formed by the electrostatic assembly of gold nanoclusters and silver nanoclusters for bioimaging and bioanalysis[J]. ACS Applied Nano Materials, 2019, 2(1): 408-417
[15] LUO Z, ZHENG K, XIE J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications[J]. Chem Commun (Camb), 2014, 50(40): 5143-5155
[16] WANG Y, CUI Y, LIU R, et al. Bio-inspired peptide-Au cluster applied for mercury (II) ions detection[J]. Science China Chemistry, 2015, 58(5): 819-824
[17] GUEVEL X L, TROUILLET V, SPIES C, et al. High photostability and enhanced fluorescence of gold nanoclusters by silver doping[J]. Nanoscale, 2012, 4(24): 7624-7631
[18] HAN S, KIM Y, KIM K. Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis[J]. Journal of colloid and interface science, 1998, 208: 272-278
[19] ZHANG H, ZELMON D E, DENG L, et al. Optical limiting behavior of nanosized polyicosahedral gold-silver clusters based on third-order nonlinear optical effects[J]. J. Am. Chem. Soc, 2001, 123: 11300-11301
[20] NALDINI L, CARIATI F, SIMONETTA G, et al. Gold-tertiary phosphine derivatives with intermetallic bonds[J]. Chemical Communications, 1966, 18: 647-648
[21] MCPARTLIN M, MASON R. novel cluster complexes of Gold( 0)-Gold( I)[J]. Chemical Communications, 1969: 334-334
[22] YANG H, WANG Y, EDWARDS A J, et al. High-yield synthesis and crystal structure of a green Au(3)(0) cluster co-capped by thiolate and sulfide[J]. Chem Commun (Camb), 2014, 50(92): 14325-14327
[23] HOSTETLER M J, GREEN S J, STOKES J J, et al. Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds[J]. J. Am. Chem. Soc, 1996, 118: 4212-4213
[24] HU F, LI J, GUAN Z, et al. Formation of an alkynyl-protected Ag112 silver nanocluster as promoted by chloride released in situ from CH2Cl2[J]. Angew Chem Int Ed Engl, 2020, 59(13): 5312-5315
[25] YUAN Z, CHEN Y, LI H, et al. Fluorescent silver nanoclusters stabilized by DNA scaffolds[J]. Chem Commun (Camb), 2014, 50(69): 9800-9815
[26] ZAN X, LI Q, PAN Y, et al. Versatile ligand-exchange method for the synthesis of water-soluble monodisperse AuAg nanoclusters for cancer therapy[J]. ACS Applied Nano Materials, 2018, 1(12): 6773-6781
[27] YU P, WEN X, TOH Y R, et al. Fluorescent metallic nanoclusters: electron dynamics, structure, and applications[J]. Particle & Particle Systems Characterization, 2015, 32(2): 142-163
[28] ZHANG X, GUO M. Electronic structure and optical transitions of Au(20-x)Cu(x) nanoclusters[J]. J Nanosci Nanotechnol, 2010, 10(11): 7192-7195
[29] ZHANG X, GUO M, XU D, et al. First-principles investigation of Ag-doped gold nanoclusters[J]. Int J Mol Sci, 2011, 12(5): 2972-2981
[30] LIU Q, YAN X, LAI Q, et al. Bimetallic gold/silver nanoclusters-gold nanoparticles based fluorescent sensing platform via the inner filter effect for hyaluronidase activity detection[J]. Sensors and Actuators B:Chemical, 2019, 282: 45-51
[31] YANG Y, SUN Y, LIAO S. Bimetallic gold-silver nanoclusters fluorescent probes for Cr(III) and Cr(VI)[J]. Analytical Methods, 2016, 8: 7237-7241
[32] ZHOU M, ZHONG J, WANG S, et al. Ultrafast relaxation dynamics of luminescent rod-shaped, silver-doped Agx Au25-x clusters[J]. The Journal of Physical Chemistry C, 2015, 119(32): 18790-18797
[33] AO H, QIAN Z, ZHU Y, et al. A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity[J]. Biosens Bioelectron, 2016, 86: 542-547
[34] QING T, LONG C, WANG X, et al. Detection of micrococcal nuclease for identifying Staphylococcus aureus based on DNA templated fluorescent copper nanoclusters[J]. Mikrochim Acta, 2019, 186(4): 248
[35] WANG H, DA L, YANG L, et al. Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples[J]. Journal of Hazardous Materials, 2020, 392: 122506
[36] TAN Y N, LEE J Y, WANG D I C. Uncovering the design rules for peptide synthesis of metal nanoparticles[J]. J. AM. CHEM. SOC, 2010, 132(16): 5677-5686
[37] CAI Y, HUA Y, YIN M, et al. Fabrication of test strips with gold-silver nanospheres and metal–organic frameworks: A fluorimetric method for sensing trace cysteine in hela cells[J]. Sensors and Actuators B: Chemical, 2020, 302: 127198
[38] SHARMA D, WANGOO N, SHARMA R K. Sensing platform for pico-molar level detection of ethyl parathion using Au-Ag nanoclusters based enzymatic strategy[J]. Talanta, 2021, 221: 121267
[39] WANG M, WANG M, WANG G, et al. A fluorescence “off-on-off” sensing platform based on bimetallic gold/silver nanoclusters for ascorbate oxidase activity monitoring[J]. Analyst, 2020, 145(3): 1001-1007
[40] PANG S, LIU S. Lysozyme-stabilized bimetallic gold/silver nanoclusters as a turn on fluorescent probe for determination of ascorbic acid and acid phosphatase[J]. Analytical Methods, 2017, 9: 6713-6718
[41] ZHANG J, YUAN Y, WANG Y, et al. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules[J]. Nano Research, 2015, 8(7): 2329-2339
[42] ISWARYA C N, DANIEL S C G K, SIVAKUMAR M. Studies on l-histidine capped Ag and Au nanoparticles for dopamine detection[J]. Mater Sci Eng C Mater Biol Appl, 2017, 75: 393-401
[43] ZHANG C, LI H, WU Y. Polyvinyl alcohol-supported AuAgNCs-CDs film as a selective sensor for gas hydrogen sulfide detection in air[J]. Macromol Rapid Commun, 2020, 41(24): e2000120
[44] JIA M, MI W, GUO S, et al. Peptide-capped functionalized Ag/Au bimetal nanoclusters with enhanced red fluorescence for lysosome-targeted imaging of hypochlorite in living cells[J]. Talanta, 2020, 216: 120926
[45] VERDUGO V S, METIC H, GWINN E. The properties of small Ag clusters bound to DNA bases[J]. J Chem Phys, 2010, 132(19): 195102
[46] ZHANG T, XU H, XU S, et al. DNA stabilized Ag–Au alloy nanoclusters and their application as sensing probes for mercury ions[J]. RSC Advances, 2016, 6(57): 51609-51618
[47] LI Z, LIU R, XING G, et al. A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters[J]. Biosens Bioelectron, 2017, 96: 44-48
[48] LI T, YI H, LIU Y, et al. One-step synthesis of DNA templated water-soluble Au-Ag bimetallic nanoclusters for ratiometric fluorescence detection of DNA[J]. J Biomed Nanotechnol, 2018, 14(1): 150-160
[49] 车振明, 马力, 黄玉坤等. ICP-OES和ICP-MS方法分析郫县豆瓣中矿物质元素的分布[J]. 中国测试, 2019, 45(12): 62-68
[50] 谢建新, 陈伍, 吴李, 等. 微波绿色合成N, S共掺杂碳点及其在Fe3+检测和温度传感方面的应用[J]. 中国测试, 2021, 47(3): 64-69
[51] LI D, WIECKOWSKA A, WILLNER I. Optical analysis of Hg2+ ions by oligonucleotide–gold-nanoparticle hybrids and DNA-based machines[J]. Angewandte Chemie, 2008, 120(21): 3991-3995
[52] 周悦, 宋丹, 刘佳瑶,等. 基于T-Hg2+-T结构的Hg2+生物传感器研究进展[J]. 环境化学, 2021, 40(2): 1-16
[53] ZHENG B, ZHENG J, YU T, et al. Fast microwave-assisted synthesis of AuAg bimetallic nanoclusters with strong yellow emission and their response to Mercury(II) Ions[J]. Sensors and Actuators B:Chemical, 2015, 221: 386-392
[54] GUI R, JIN H. Aqueous synthesis of human serum albumin-stabilized fluorescent Au/Ag core/shell nanocrystals for highly sensitive and selective sensing of copper(II)[J]. Analyst, 2013, 138(23): 7197-7205
[55] ZHANG N, SI Y, SUN Z, et al. Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold-silver nanoclusters with "silver effect"-enhanced red fluorescence[J]. Anal Chem, 2014, 86(23): 11714-11721
[56] MENG J, SHUANG E, WEI X, et al. Confinement of AuAg NCs in a pomegranate-type silica architecture for improved copper ion sensing and imaging[J]. ACS Appl Mater Interfaces, 2019, 11(23): 21150-21158
[57] LI Q, LI L, CHEN L, et al. Au-Ag nanoclusters/3, 3', 5, 5' tetramethylbenzidine complex as a sensitive “Turn-On” fluorescent nanoplatform for mercury (II) ions sensing[J]. J Nanosci Nanotechnol, 2020, 20(2): 692-700
[58] BABAEE E, BARATI A, GHOLIVAND M B, et al. Determination of Hg2+ and Cu2+ ions by dual-emissive Ag/Au nanocluster/carbon dots nanohybrids: Switching the selectivity by pH adjustment[J]. J Hazard Mater, 2019, 367: 437-446
[59] SANNIGRAHI A, CHOWDHURY S, NANDI I. Development of a near infrared Au-Ag bimetallic nanocluster for ultrasensitive detection of toxic Pb2+ ions in vitro and inside cells[J]. Nanoscale Advances, 2019, 1: 3660-3669
[60] HUANG H, LI H, FENG J, et al. One-step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and in vitro detection of Fe3+[J]. Sensors and Actuators B:Chemical, 2016, 223: 550-556
[61] ZHAI Q, XING H, FAN D, et al. Gold-silver bimetallic nanoclusters with enhanced fluorescence for highly selective and sensitive detection of glutathione[J]. Sensors and Actuators B:Chemical, 2018, 273: 1827-1832
[62] ZHANG Y, YANG M, SHAO Z, et al. A paper-based fluorescent test for determination and visualization of cysteine and glutathione by using gold-silver nanoclusters[J]. Microchemical Journal, 2020, 158: 105327
[63] WANG Z, DING S, NARJH E Y J. Determination of thiols by fluorescence using Au@Ag nanoclusters as probes[J]. Analytical Letters, 2014, 48(4): 647-658
[64] GUI R, WANG Y, SUN J. Protein-stabilized fluorescent nanocrystals consisting of a gold core and a silver shell for detecting the total amount of cysteine and homocysteine[J]. Microchimica Acta, 2014, 181(11-12): 1231-1238
[65] LIU S, PANG S. A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters[J]. Mikrochim Acta, 2018, 185(9): 426
[66] WANG X, ZHU G, CAO W, et al. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H2O2-mediated fluorescence quenching of gold/silver nanoclusters[J]. Talanta, 2019, 191: 46-53
[67] DOU Y, YANG X. Novel high-sensitive fluorescent detection of deoxyribonuclease I based on DNA-templated gold/silver nanoclusters[J]. Anal Chim Acta, 2013, 784: 53-58
[68] WANG X, LIU Z, ZHAO W, et al. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters[J]. Anal Bioanal Chem, 2019, 411(5): 1009-1017
[69] 黄小梅, 邓祥, 邓子禾. 金-银双金属纳米簇@多壁碳纳米管-二氧化钛纳米材料为新型氧化还原探针构建电化学免疫传感器[J]. 分析测试学报, 2022, 41(5): 675-681
[70] ZHENG J, ZHANG C, DICKSON R. Highly fluorescent, water-soluble, size-tunable gold quantum dots[J]. Phys Rev Lett, 2004, 93(7): 077402
[71] XIE J, ZHENG Y, YING J. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. J. Am. Chem. Soc, 2009, 131(3): 888-889
[72] CHEN L, ZHANG Y, JIANG H, et al. Cytidine mediated AuAg nanoclusters as bright fluorescent probe for tumor imagingin vivo[J]. Chinese Journal of Chemistry, 2016, 34(6): 589-593
[73] TIAN L, LI Y, REN T, et al. Novel bimetallic gold-silver nanoclusters with “Synergy”-enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing[J]. Talanta, 2017, 170: 530-539