您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>电磁无心夹具夹紧力自适应控制系统研究

电磁无心夹具夹紧力自适应控制系统研究

1005    2022-09-24

免费

全文售价

作者:赵国强, 薛进学, 王毅鹏, 高昌彬, 吕宽宽

作者单位:河南科技大学机电工程学院,河南 洛阳 471003


关键词:变形;自适应控制;电磁无心夹具;模糊PID


摘要:

针对轴承套圈电磁无心磨削过程中因夹紧造成的套圈变形问题,提出一种电磁无心夹具自适应控制方案。通过对磨削过程中轴承套圈受力状况进行分析,确定控制对象;设计内置压力传感器的检测装置,可实时检测控制对象的变化;制定基于模糊PID算法的控制策略并对基于模糊PID算法和常规PID算法的系统模型进行建模和仿真。试验结果证明:该系统实现了夹紧力的控制功能,模糊PID算法相比常规PID算法能够有效降低系统的超调量,基于模糊PID算法的系统有更快的响应速度和更强的抗干扰能力。电磁无心夹具夹紧力自适应控制系统能在一定程度上解决磨削过程中的变形问题。


Research on clamping force adaptive control system of electromagnetic centerless fixture
ZHAO Guoqiang, XUE Jinxue, WANG Yipeng, GAO Changbin, Lü Kuankuan
School of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China
Abstract: Aiming at the problems of ring deformation caused by clamping in the process of bearing ring electromagnetic centerless grinding, an adaptive control scheme of electromagnetic centerless fixture was proposed. By analyzing the force condition of bearing ring in the grinding process, the control object was determined. A detection device was designed to detect the change of the control object in real time through the pressure sensor. The control strategy was formulated, and the system model based on Fuzzy PID algorithm and conventional PID algorithm was modeled and simulated. The results showed that the system realized the control function of clamping force. Compared with the PID algorithm, the fuzzy PID algorithm can effectively reduce the overshoot of the system. The system based on fuzzy PID algorithm had a faster response speed and stronger anti-interference ability. The experiment showed that the clamping force adaptive control system of electromagnetic centerless fixture can solve the problem of deformation in grinding process to a certain extent.
Keywords: deformation;adaptive control;electromagnetic centerless fixture;fuzzy PID
2022, 48(9):145-151  收稿日期: 2021-09-10;收到修改稿日期: 2021-11-24
基金项目: 国家重点研发计划课题(2018YFB2000502)
作者简介: 赵国强(1993-),男,河南洛阳市人,硕士研究生,专业方向为机械设计及机电一体化
参考文献
[1] 夏新涛, 马伟, 颉谭成, 等. 滚动轴承制造工艺学[M]. 北京: 机械工业出版社, 2007.
[2] 张彦合, 焦阳, 张佳. 薄壁轴承磨削电磁无心夹具的精确调整[J]. 轴承, 2011(8): 17-18
[3] 刘露冬漫. 薄壁轴承套圈硬切削加工变形与表面完整性的研究[D]. 南京: 南京航空航天大学, 2018.
[4] 王明杰, 李凌霄, 闫继山, 等. 薄壁轴承套圈加工方法分析与加强圈尺寸优化[J]. 轴承, 2019(5): 12-16
[5] 刘雪昭. 一种用于天车防碰撞的自动控制方法[J]. 冶金自动化, 2021, 45(S1): 265-267
[6] OSCAR G, MARI S J, ENRIQUE G, et al. A method to minimize the workpiece deformation using a concept of intelligent fixture[J]. Robotics and Computer-Integrated Manufacturing, 2017, 48(1): 209-218
[7] 高升, 王细洋, 张昆仑, 等. 基于PLC的飞机结构件变夹紧力柔性夹具研究[J]. 制造技术与机床, 2019(9): 147-151
[8] 齐钢, 胡晨晖, 张光荣. 汽车电子机械制动卡钳夹紧力控制与验证[J]. 机床与液压, 2021, 49(16): 76-81
[9] 谢存禧, 颜波, 张铁. 磁悬浮伺服的机器人装配夹具及其智能控制[J]. 机器人, 2001(5): 442-445
[10] 陈志军, 张旭, 张风琴, 等. 推力角接触球轴承外圈沟道磨削过程中砂轮的修整[J]. 轴承, 2019(11): 21-24
[11] 杨彪, 李凌霄, 王明杰, 等. 电磁无心夹具的无痕支承技术[J]. 轴承, 2019(11): 27-31
[12] 刘晓初, 代东波, 何铨鹏, 等. 电磁无心夹具在轴承超高速离心磨削上的应用[J]. 机床与液压, 2016, 44(15): 45-49
[13] 李新, 陈春俊. 基于模糊PID的高速列车车内压力主被动控制[J]. 中国测试, 2020, 46(1): 105-109
[14] 王欢, 陈春俊, 杨露, 等. 模糊PID迭代学习气压模拟系统控制算法研究[J]. 中国测试, 2021, 47(4): 77-82