您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于ABAQUS的复合箍筋约束轻骨料混凝土柱偏压力学性能研究

基于ABAQUS的复合箍筋约束轻骨料混凝土柱偏压力学性能研究

1170    2022-09-24

免费

全文售价

作者:赵发军1, 李建2

作者单位:1. 河南农业职业学院园艺园林学院,河南 郑州 451450;
2. 郑州大学土木工程学院,河南 郑州 450001


关键词:箍筋;混凝土柱;承载力;延性;有限元分析


摘要:

为深入研究复合箍筋约束轻骨料混凝土柱偏心受压力学性能,首先采用有限元软件ABAQUS分别对14根箍筋约束柱建模,分析轻骨料混凝土强度、配箍形式、体积配箍率、偏心距对约束混凝土柱偏压力学性能的影响,然后探究试件破坏机理。研究结果表明:经复合箍筋约束后,相比普通配箍,试件的延性和承载力有显著提高,其中复合螺旋箍约束试件提高幅度最大,且螺旋箍主要在弹塑性、塑形阶段起作用,特别是在压区纵筋屈服后,复合箍筋对核心混凝土约束作用一直持续到加载结束。复合螺旋箍约束柱峰值荷载随着偏心距的增加而显著降低,但脆性有所改善;提高轻骨料混凝土强度,峰值荷载呈增大趋势,但是延性降低;峰值荷载随着体积配箍率的增大而提高。


Study on mechanical properties of lightweight aggregate concrete columns confined by composite stirrups under eccentric compression based on ABAQUS
ZHAO Fajun1, LI Jian2
1. School of Horticulture and Landscape Architecture, Henan Vocational College of Agriculture, Zhengzhou 451450, China;
2. School of Civil Engineering, Zhengzhou University, Zhengzhou, China 450001
Abstract: In order to further study the eccentric compression performance of stirrup-constrained lightweight aggregate concrete columns, firstly, the finite element software ABAQUS was used to model 14 stirrup-confined columns respectively, and the strength, coupling form and volumetric coupling ratio of lightweight aggregate concrete were analyzed. The effect of eccentricity on the eccentric compression performance of confined concrete columns, and the failure mechanism of the specimen was also explored. The research results show that the composite stirrups restrain the ductility and bearing capacity of the lightweight aggregate concrete column significantly compared with the common stirrups, of which the composite spiral hoop restraint has the largest increase. Especially after the longitudinal reinforcement in the compression zone yields, and the restraint effect of composite stirrups on the core concrete continues until the end of loading. The ultimate bearing capacity of the composite spiral hoop restrained column decreases significantly with the increase of the eccentricity, whereas the ductility augment; it increases with augment of the concentrate strength of the lightweight aggregate concrete, whereas the ductility decreases; increases with the increase of the volume coupling rate .
Keywords: stirrup;concrete column;bearing capacity;ductility;finite element analysis
2022, 48(9):171-176,184  收稿日期: 2021-07-13;收到修改稿日期: 2021-09-18
基金项目: 国家自然科学基金项目(51408556)
作者简介: 赵发军(1983-),男,山东临沂市人,讲师,硕士,主要从事结构设计、工程施工等方面的研究
参考文献
[1] 孙海林, 丁建彤, 叶列平. 高强轻骨料混凝土桥梁工程中的应用及发展 [C]//第十五届全国桥梁学术会议论文集. 上海: 同济大学出版社, 2002: 787-793.
[2] 叶列平, 孙海林, 陆新征, 等. 高强轻骨料混凝土结构-性能、分析与计算 [M]. 北京: 科学出版社, 2009: 1-4.
[3] 王海涛, 王立成. 钢纤维改善轻骨料混凝土力性能的试验研究[J]. 建筑材料学报, 2007(2): 66-72
[4] 刘强, 孙敏, 朱聘儒, 等. 轻骨料混凝土局部承压试验研究及计算分析[J]. 建筑结构学报, 2005(1): 103-107
[5] 吴涛, 魏慧, 刘喜, 等. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2): 215-225
[6] 张林琳. 箍筋约束轻骨料混凝土轴压性能研究[D]. 西安: 长安大学, 2018.
[7] 刘喜, 吴涛, 魏慧, 等. 箍筋约束轻骨料混凝土轴心受压应力-应变曲线研究[J]. 建筑结构学报, 2020, 42(6): 1-9
[8] YONG Y K. Behavior of laterally confined high-strength concrete under axial loads[J]. Journal of Hydraulic Engineering, 1988, 114(2): 332-351
[9] WEST J, IBRAHIM A, HINDI R. Analytical compressive stress- strain model for high-strength concrete confined with cross-spirals[J]. Engineering Structures, 2016, 113: 369
[10] MARTINEZ S, NILSON A H, SLATE F O. Spirally reinforced high-strength concrete columns[J]. ACI Journal Proceedings, 1984, 81(5): 431-442
[11] RICHART F E, BRANDTZAEG A, BROWANRL. Failure of plain and spirally reinforced concrete in compression[J]. University of Illinois Bulletin, 1929, 26: 52
[12] AHMAD S H, SHAH S P. Stress-strain curves of concrete confined by spiral reinforcement[J]. ACI Structural Journal, 1982, 79(6): 490
[13] 史庆轩, 王南, 田园, 等. 高强箍筋约束高强混凝土轴心受压应力-应变全曲线研究[J]. 建筑结构学报, 2013, 34(4): 148
[14] 郑文忠, 侯翀驰. 不同强度等级箍筋约束混凝土柱设计方法[J]. 建筑结构学报, 2016, 37(12): 81
[15] 郑文忠, 侯翀驰, 常卫. 高强钢棒螺旋箍筋约束混凝土圆形截面柱受力性能试验研究[J]. 建筑结构学报, 2018, 39(6): 29
[16] 钟楚珩, 冷鋆, 周金枝, 等. CFRP圆钢管混凝土中长柱轴压承载力研究[J]. 中国测试, 2021, 47(6): 83-90
[17] 丁百湛, 江梅珍, 季柳红. 混凝土抗压强度测量不确定度评定[J]. 中国测试, 2007, 151(2): 101-102, 114
[18] 方自虎, 周海俊, 赖少颖, 等. ABAQUS混凝土应力-应变关系选择[J]. 建筑结构, 2013(S2): 559-561