您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>超声幅值差法测量螺栓轴向应力研究

超声幅值差法测量螺栓轴向应力研究

1265    2022-11-18

免费

全文售价

作者:张葆青1, 辛越峰1, 陈爽1, 王卫东2

作者单位:1. 中国工程物理研究院流体物理研究所,四川 绵阳 621900;
2. 西安电子科技大学机电工程学院,陕西 西安 710071


关键词:散射衰减;声时差(TOF);幅值差;螺栓应力测量


摘要:

该文基于受载多晶体介质中的超声波散射衰减理论,针对传统渡越时间法(TOF)对螺栓轴向应力测量精度较低的问题,提出一种利用超声回波幅值衰减的螺栓轴向应力测量方法。首先,推导瑞利散射范围内多晶材料中纵波和横波衰减系数,进一步得出螺栓受载前后的超声回波幅值与应力依赖关系的理论模型。此外,对理论模型进行数值仿真,验证模型的可行性。随后,搭建螺栓轴向应力超声测量系统,对比分析TOF法和幅值差法测量螺栓轴向应力的实验结果。实验结果表明,该文提出的基于超声散射衰减的幅值差法优于传统的TOF法,具有一定的工程应用价值。



Measurement method of bolt axial stress using ultrasonic amplitude difference
ZHANG Baoqing1, XIN Yuefeng1, CHEN Shuang1, WANG Weidong2
1. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
2. School of Mechano-electronic Engineering, Xidian University, Xi’an 710071, China
Abstract: Based on the scattering attenuation theory of loaded polycrystalline materials, this paper proposes a method for measuring bolt axial stress using ultrasonic echo amplitude attenuation to solve the problem of low accuracy of bolt axial stress measurement by traditional time-of-flight (TOF) method. Firstly, the attenuation coefficients of longitudinal and transverse waves of polycrystalline materials in the Rayleigh scattering range are deduced. Besides, the theoretical model of the relationship between the ultrasonic echo amplitude and axial stress before and after the bolt is loaded is obtained. Then, numerical simulation of the theoretical model was carried out to verify the feasibility of the model. Finally, an ultrasonic measurement system for bolt axial stress was built, and the experimental results of TOF method and amplitude difference method for measuring bolt axial stress were compared and analyzed. The experimental results shown that the amplitude difference method based on ultrasonic scattering attenuation is superior to the traditional TOF method. Therefore, the stress measurement method proposed in this paper has certain engineering application value.
Keywords: scatter attenuation;time-of-flight (TOF);amplitude difference;stress measurement of bolts
2022, 48(11):15-21  收稿日期: 2022-06-30;收到修改稿日期: 2022-08-10
基金项目: 陕西省重点研发计划项目(2022NY-211)
作者简介: 张葆青(1972-),男,河南孟津县人,高级工程师,研究方向为机械设计、机电一体化
参考文献
[1] 吴冠男, 徐超. 基于混沌超声波激励的螺栓连接松动检测研究[J]. 振动与冲击, 2018, 37(9): 208-213
[2] 韩玉强, 吴付岗, 李明海, 等. 声弹性螺栓应力测量影响因素[J]. 中南大学学报:自然科学版, 2020, 51(2): 359-366
[3] JABIR S A A, GUPTA N K. Thick-film ceramic strain sensors for structural health monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(11): 3669-3676
[4] 王琳涛. 基于机电阻抗的法兰螺栓松动检测[D]. 大连: 大连理工大学, 2021.
[5] ZHOU L, CHEN S X, NI Y Q, et al. EMI-GCN: A hybrid model for real-time monitoring of multiple bolt looseness using electromechanical impedance and graph convolutional networks[J]. Smart Materials and Structures, 2021, 30(3): 035032
[6] 刘家斌, 王雪梅, 倪文波. 螺栓轴向应力-超声波渡越时间自动标定系统研究[J]. 中国测试, 2020, 46(3): 91-96
[7] 吴克成, 林水深. 螺栓应力超声测量方法的改进[J]. 华中科技大学学报:自然科学版, 1988(1): 171-176
[8] LIU E X, LIU Y M, CHEN Y L, et al. Measurement method of bolt hole assembly stress based on the combination of ultrasonic longitudinal and transverse waves[J]. Applied Acoustics, 2022, 189: 108603
[9] PAN Q X, PAN R P, SHAO C, et al. Research review of principles and methods for ultrasonic measurement of axial stress in bolts[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 44-59
[10] 孙朝明, 王增勇, 李建文. 声弹效应测量螺栓轴向应力的有限元计算分析[J]. 振动与冲击, 2019, 38(13): 164-171
[11] TAKAHASHI S, TAKAHASHI K. Stress dependency on the ultrasonic wave velocity and attenuation of Fe-C system[J]. Journal de Physique IV Proceedings, EDP Sciences, 1996, 06(C8): 845-848
[12] 潘勤学, 邵唱, 肖定国, 等. 基于形状因子的螺栓紧固力超声检测方法研究[J]. 兵工学报, 2019, 40(4): 880-888
[13] 严勇, 刘楚达. 风电螺栓轴向应力超声测量标定实验研究[J]. 应用声学, 2021, 40(4): 594-601
[14] PAN Q X, PAN R P, CHANG M L, et al. A shape factor based ultrasonic measurement method for determination of bolt preload[J]. NDT & E International, 2020, 111,: 102210
[15] YASUI H, TANAKA H, FUJII I, at al. Ultrasonic measurement of axial stress in short bolts with consideration of nonlinear deformation[J]. JSME International Journal, 2008, 42(1): 111-118
[16] KUBE C M, DU H, GHOSHAL G, et al. Turner. Stress-dependent changes in the diffuse ultrasonic backscatter coefficient in steel: Exper-imental results[J]. Journal of The Acoustical Society of America, 2012, 132(1): EL43-EL48
[17] KUBE C M, ARGUELLES A, TURNER J A. On the acoustoelasticity of polycrystalline materials[J]. Journal of The Acoustical Society of America, 2015, 138(3): 1498-1507
[18] KUBE C M, TURNER J A. Stress-dependent ultrasonic scattering in polycrystalline materials[J]. Journal of The Acoustical Society of America, 2016, 139(2): v811-824
[19] KUBE C M, ARGUELLES A P. Pressure influence on elastic wave attenuation in polycrystalline materials[J]. Journal of The Acoustical Society of America, 2019, 146(6): 4183-4189
[20] WEAVER R L. Diffusivity of ultrasound in polycrystals[J]. Journal of The Mechanics and Physics of Solids, 1990, 38(1): 55-86
[21] 葛庭燧. 固体内耗与超声衰减[J]. 物理, 1987(9): 547-551
[22] DOWELL E H, GORMAN G F, SMITH D A. Acoustoelasticity: General theory, acoustic natural modes and forced response to sinusoidal excitation, including comparisons with experiment[J]. Journal of Sound and Vibration, 1977, 52(4): 519-542
[23] STANKE F E, KINO G S. A unified theory for elastic wave propagation in polycrystalline materials[J]. Journal of The Acoustical Society of America, 1984, 75(3): 665-681
[24] SCHMERR L W. Fundamentals of ultrasonic nondestructive evaluation[M]. 2nd. ed. Ames: Springer, 2016: 385-390.
[25] CHEN P, HE X L, WANG X Y. Ultrasonic measurement of axial stress using high-frequency cylindrical guided wave[J]. IEEE Sensors Journal, 2021, 21(5): 6691-6697
[26] 任晓寰, 冯海泓, 杨震亚. 超声回波参数估计的初值选取方法[J]. 声学学报, 2020, 45(5): 728-738