您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>红砂岩结构面热阻特性及其影响的实验研究

红砂岩结构面热阻特性及其影响的实验研究

1002    2023-01-12

免费

全文售价

作者:聂鑫, 骆进

作者单位:中国地质大学(武汉)工程学院,湖北 武汉 430074


关键词:红砂岩;单裂隙;传热特性;裂隙面热阻


摘要:

结构面传热特性是决定岩体传热效率的关键问题因素,但目前有关结构面热传递过程中其热阻特性的实验研究较少。该文采用红砂岩作为研究对象,进行单裂隙红砂岩传热实验,采用稳态法测出结构面热阻,分析面积比、填充物厚度以及压力对热阻的影响。结果表明:裂隙面热阻与面积比呈抛物线型增长关系;当裂隙中填充物厚度由0逐渐增加至0.8 mm时,粗糙裂隙面热阻随着填充物厚度增加呈抛物线型增长趋势;当压力由0增长至500 N时,平直和粗糙裂隙面热阻均随着外加压力的增加呈抛物线型减小趋势,减幅逐渐减小。该研究取得的成果可为准确刻画红砂岩结构面传热特性提供实验依据。


Experimental research on the characteristics and influence of thermal resistance of joints in red sandstone
NIE Xin, LUO Jin
Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
Abstract: The heat transfer through rock discontinuity plays a key role in the heat transfer efficiency of rock masses. However, there are rare studies concerning on the thermal resistance measurements. In this paper, red sandstone with a single-fracture is used as heat transfer test. The thermal resistance of the fracture surface is measured by the steady-state method. The parameters such as the effect of area ratio, filling thickness and pressure on thermal resistance are determined and analyzed. The results show that the thermal resistance of the fracture surface increases in a parabolic manner with increasing the area ratio. When the thickness of the filling materials in the crack gradually increases from 0 to 0.8 mm, the thermal resistance of the rough crack surface shows a parabolic growth trend. By increasing the normal pressure from 0 to 500 N, thermal resistance shows a parabolic decrease trend. The findings obtained in this research provide experimental basis for accurately characterizing the heat transfer characteristics of joints in red sandstone.
Keywords: red sandstone;single fracture;heat transfer characteristics;fracture thermal resistance
2023, 49(1):50-56,70  收稿日期: 2021-08-27;收到修改稿日期: 2021-11-08
基金项目: 国家自然科学基金项目(41877200)
作者简介: 聂鑫(1997-),男,湖北武汉市人,硕士研究生,专业方向为地热开发中的工程地质与岩土工程问题等
参考文献
[1] COUTIER J P, FARBER E A. Two applications of a numerical approach of heat transfer process within rock beds[J]. Solar Energy, 1982, 29(6): 451-462
[2] 王玉刚, 轩诗瑶, 赵晓东, 等. 液冷散热器性能测试系统的研制[J]. 中国测试, 2020, 46(4): 97-101
[3] 刘乃飞, 李宁, 宋战平, 等. 低温裂隙岩体的各向异性传热模型[J]. 岩石力学与工程学报, 2019, 38(4): 2625-2635
[4] 徐彬. 大型低温液化天然气(LNG)地下储气库裂隙围岩的热力耦合断裂损伤 分析研究[D]. 西安: 西安理工大学, 2008.
[5] 彭担任, 赵全富, 胡兰文, 等. 煤与岩石的导热系数研究[J]. 矿业安全与环保, 2000, 27(6): 16-18
[6] 肖衡林, 蔡德所, 何俊. 基于分布式光纤传感技术的岩土体导热系数测定方法[J]. 岩石力学与工程学报, 2009, 28(4): 819-826
[7] 贺玉龙, 赵文, 张光明. 温度对花岗岩和砂岩导热系数影响的试验研究[J]. 中国 测试, 2013, 39(1): 114-116
[8] LUO J, JIA J, ZHAO H F, et al. Determination of the thermal conductivity of sandstones from laboratory to field scale[J]. Environmental Earth Sciences, 2016, 75(16): 1157-1165
[9] 曾兼权, 李国润, 李光宗. 裂隙基岩各向热学参数的现场测定试验[J]. 成都科技 大学学报, 1994(2): 1-7
[10] CHEN Y D, ZHAO Z H. Heat transfer in a 3D rough rock fracture with heterogeneous apertures[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134: 1-15
[11] 渠成堃, 周辉, 任振群, 等. 热固耦合下裂隙产状对导热系数影响的模拟分析[J]. 沈阳工业大学学报, 2017, 39(2): 219-224
[12] 王世东, 虎维岳, 张文忠. 深部裂隙岩体温度场及其控制因素[J]. 太原理工大 学学报, 2010, 41(5): 613-618
[13] 张勤. 脆性岩石热-力-损伤耦合机理及数值模拟研究[D]. 武汉: 武汉大学, 2013.
[14] YAN C Z, JIAO Y Y. A 2D discrete heat transfer model considering the thermal resistance effect of fractures for simulating the thermal cracking of brittle materials[J]. Acta Geotechnica, 2019, 15(5): 1303-1319
[15] WU Z J, ZHOU Y, FAN L F. A fracture aperture dependent thermal-cohesive coupled model for modelling thermal conduction in fractured rock mass[J]. Computers and Geotechnics, 2019, 114: 103-108