您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>SFCW干涉雷达用于高铁车桥耦合振动监测的实验研究

SFCW干涉雷达用于高铁车桥耦合振动监测的实验研究

886    2023-03-23

免费

全文售价

作者:高卓妍1,2, 贾岩1,2, 刘淑一1,2, 张祥坤1,2

作者单位:1. 中国科学院国家空间科学中心 中国科学院微波遥感技术重点实验室,北京 100190;
2. 中国科学院大学电子电气与通信工程学院,北京 100049


关键词:地基干涉雷达;步进频连续波;调频连续波;简支箱梁;车桥耦合振动;动挠度


摘要:

传统的高铁车桥耦合振动监测手段为位移计、加速度计、倾角仪等接触式测量手段,存在安装困难、工作效率低等缺点。地基干涉雷达是非接触式测量手段,体积小、安装灵活,可作为传统监测手段的一种有效补充。基于矢量网络分析仪(vector network analyzer, VNA)搭建一套Ku频段的步进频连续波(stepped frequency continuous wave, SFCW)干涉雷达,与自主研发的Ka频段的调频连续波(frequency modulated continuous wave, FMCW)干涉雷达对比验证该系统微形变监测的可行性。实验对象为盐通高铁的32 m简支箱梁,实验用车为和谐号16节重联列车,运行速度为250 km/h。实验结果表明,两套雷达系统的动挠度测量结果相差0.013 mm,实测精度达亚毫米级。SFCW干涉雷达可以20 Hz的采样频率准确地测量桥梁的自振频率和强振频率,频谱测量精度达0.1 Hz,且SFCW干涉雷达的信噪比更高。


Experimental study of SFCW interferometry radar applied to vehicle-bridge coupling vibration monitoring of high-speed railway bridge
GAO Zhuoyan1,2, JIA Yan1,2, LIU Shuyi1,2, ZHANG Xiangkun1,2
1. Key Lab of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Traditional vehicle-bridge coupling vibration monitoring methods for high-speed railway include displacement meter, accelerometer, inclinometer and other contact measuring methods, which have disadvantages of difficult installation and low working efficiency. Ground-based interferometry radar is a non-contact measuring method, which is small in volume and flexible in installation, and can be used as an effective supplement to traditional monitoring methods. Based on vector network analyzer (VNA), a Ku-frequency stepped frequency continuous wave (SFCW) interferometry radar system is built. Cross experiment with the self-developed Ka-band frequency modulated continuous wave (FMCW) interferometry radar has been carried out to verify the feasibility of the micro-deformation monitoring. The experimental object is the 32 m simple box girder of Yancheng-Nantong High-speed Railway. The experimental vehicle is 16-carriage reconnect trains with a running speed of 250 km/h. The experimental results indicate that the difference between the dynamic deflection measurement results of the two radar systems is 0.013 mm, and the measured accuracy reaches sub-millimeter level. SFCW interferometry radar can accurately measure the natural frequency and forced frequency with PRF of 20 Hz, spectrum measurement accuracy reaches up to 0.1 Hz. Furthermore, the signal-to-noise ratio (SNR) of SFCW interferometry system is higher.
Keywords: ground-based interferometry radar;stepped frequency continuous wave;frequency modulated continuous wave;simply supported box girder;vehicle-bridge coupled vibration;dynamic deflection
2023, 49(3):135-141  收稿日期: 2021-05-19;收到修改稿日期: 2021-09-27
基金项目:
作者简介: 高卓妍(1995-),女,黑龙江哈尔滨市人,博士研究生,研究方向为雷达信号处理及其应用等
参考文献
[1] 姚京川. 高速铁路常用跨简支箱梁运营性能检定[J]. 中国铁道科学, 2017, 38(2): 34-41
[2] MONSERRAT O, CROSETTO M, LUZI G. A review of ground-based SAR interferometry for deformation measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 40-48
[3] LEVA D, NICO G, TARCHI D, et al. Temporal analysis of a landslide by means of a ground-based SAR Interferometer[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(4): 745-752
[4] GENTILE C, BERNARDINI G. An interferometric radar for non-contact measurement of deflections on civil engineering structures: Laboratory and full-scale tests[J]. Structure and Infrastructure Engineering, 2010, 6(5): 521-534
[5] FARINA P, LEONI L, BABBONI F, et al. IBIS-M, an innovative radar for monitoring slopes in open-pit mines[C]// Proceedings of International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, 2011.
[6] ROEDELSPERGER S, COCCIA A, VICENTE D, et al. The novel FastGBSAR sensor: Deformation monitoring for dike failure prediction[C]// Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 2013: 420-423.
[7] STROZZI T, WERNER C, WIESMANN A, et al. Topography mapping with a portable real-aperture radar interferometer[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 277-281
[8] GUIDO L, MICHELE C, FERNÁNDEZ ENRIC. Radar interferometry for monitoring the vibration characteristics of buildings and civil structures: Recent case studies in spain[J]. Sensors, 2017, 17(4): 669
[9] GENTILE C. Deflection measurement on vibrating stay cables by non-contact microwave interferometer[J]. Ndt & E International, 2010, 43(3): 231-240
[10] TARCHI D, RUDOLF H, LUZI G, et al. SAR interferometry for structural changes detection: a demonstration test on a dam[C]// IEEE 1999 International Geoscience and Remote Sensing Symposium, 1999.
[11] CASAGLI N, CATANI F, VENTISETTE C, et al. Monitoring, prediction, and early warning using ground-based radar interferometry[J]. Landslides, 2010, 7(3): 291-301
[12] HUANG Q, WANG Y, LUZI G, et al. Ground-based radar interferometry for monitoring the dynamic performance of a multitrack steel truss high-speed railway bridge[J]. Remote Sensing, 2020, 12(16): 2594
[13] 陈思彤, 邵益, 刘伟, 等. 基于地基雷达的高铁桥梁运营动态形变监测[J]. 科技创新与应用, 2020(17): 33-35
[14] 刘小阳, 孙广通, 李峰, 等. 基于地基雷达的高铁简支箱梁运营性能检定[J]. 中国铁道科学, 2020, 41(1): 50-56
[15] 胡礼军, 吴蓉, 黄炎阶, 等. 基于微波干涉技术的杆塔形变及导线舞动幅值监测研究[J/OL]. 中国测试: 1-6[2021-09-27]. http://kns.cnki.net/kcms/detail/51.1714.tb.20210529.2025.006.html.
[16] 李俊慧. 基于SFCW的GB-InSAR形变监测技术研究[D]. 成都: 电子科技大学, 2016.
[17] 陈伟民, 李存龙. 基于微波雷达的位移/距离测量技术[J]. 电子测量与仪器学报, 2015, 29(9): 1251-1265
[18] 邵泽龙. 基于FMCW GBSAR的微形变监测技术研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019.
[19] 邵泽龙, 张祥坤, 李迎松, 等. 基于微波干涉雷达的悬索桥振动监测[J]. 现代电子技术, 2019, 42(16): 140-143+148
[20] 孟鑫, 刘鹏辉, 姚京川, 等. 高速铁路32m简支箱梁动力特性试验分析[J]. 铁道建筑, 2016(1): 10-15
[21] 夏禾, 张楠, 郭薇薇等. 车桥耦合振动工程[M]. 北京: 科学出版社, 2014.