您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于石墨烯相变材料的锂离子电池热管理技术研究

基于石墨烯相变材料的锂离子电池热管理技术研究

1033    2023-05-26

免费

全文售价

作者:吴晓昱1, 陈明毅2, 李海航3, 崔怡琳2, 梁俊梅1

作者单位:1. 北京市计量检测科学研究院, 北京 100029;
2. 江苏大学, 江苏 镇江 212013;
3. 中国计量大学, 浙江 杭州 310018


关键词:锂离子电池;复合相变材料;石墨烯;膨胀石墨;石蜡;温度


摘要:

锂离子电池由于其高能量与高能量密度而被广泛运用于生活中的各个领域,但这也导致它在运行期间容易升温,影响电池的正常工作。相变材料(PCM)是一种有效热能存储材料,由于其在转变物理性质的过程中可以吸收或者释放大量潜热,从而被研究应用于电池热管理系统。该文以石蜡(PA)作为相变基体,膨胀石墨(EG)和石墨烯协同增强导热,制备高导热性的复合相变材料。在不同石墨烯含量下,观察其在锂电池放电过程中的冷却作用。结果表明,复合相变材料能有效降低工作中锂离子电池的表面温度,同时使电池的性能更加稳定。通过对比复合相变材料与PA的降温效果,发现当放电倍率越高,其降温效果越好。当放电倍率为3C、复合相变材料为PCM-4时,冷却效果较好,电池最高表面温度41.24 ℃,比PCM-1下降5.31 ℃,较PA而言,温度降低10.39 ℃。


Research on thermal management technology of lithium ion battery based on graphene phase change material
WU Xiaoyu1, CHEN Mingyi2, LI Haihang3, CUI Yilin2, LIANG Junmei1
1. Beijing Institute of Metrology, Beijing 100029, China;
2. Jiangsu University, Zhenjiang 212013, China;
3. China Jiliang University, Hangzhou 310018, China
Abstract: Due to lithium-ion battery's high energy and energy density, it is widely used in various fields of life. However, this also leads to the problem of overheating during operation, which affects the normal operation of the battery. Phase change materials (PCMs) are effective thermal energy storage materials that can absorb or release a large amount of latent heat during the process of changing physical properties, and have been studied for application in battery thermal management systems. In this paper, paraffin (PA) is used as the phase change matrix, and expanded graphite (EG) and graphene are synergistically enhanced for thermal conductivity to prepare high thermal conductivity composite phase change materials. The cooling effect of the composite phase change material on lithium-ion batteries during discharge was observed at different graphene contents. The results show that the composite phase change material can effectively reduce the surface temperature of lithium-ion batteries during operation, and make the battery performance more stable. By comparing the cooling effect of the composite phase change material and PA, it was found that the higher the discharge rate, the better the cooling effect. When the discharge rate was 3C and the composite phase change material was PCM-4, the cooling effect was better, and the highest surface temperature of the battery was 41.24℃, which was 5.31℃ lower than PCM-1 and 10.39℃ lower than PA.
Keywords: lithium ion battery;composite phase change materials;graphene;expanded graphite;paraffin wax;temperature
2023, 49(5):1-8  收稿日期: 2021-08-10;收到修改稿日期: 2021-11-06
基金项目: 国家重点研发计划项目(2017YFF0210800);应急管理部消防救援局科技计划(2020XFCX33);浙江省安全工程与技术研究重点实验室资助(202002)
作者简介: 吴晓昱(1981-),男,河北邯郸市人,高级工程师,硕士,主要从事计量检测科学研究和管理
参考文献
[1] JOSHY N, HAJIYAN M, SIDDIQUEA R M, et al. Experimental investigation of the effect of vibration on phase change material (PCM) based battery thermal management system[J]. Journal of Power Sources, 2020, 450: 227717
[2] 李建明. 基于六方氮化硼/石蜡复合相变材料的锂离子电池冷却性能研究[D]. 镇江: 江苏大学, 2020.
[3] WANG Z C, DONG C Q. A comprehensive review on thermal management systems for power lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110685
[4] 杨帆, 茅丰, 曹岑. 基于粒子滤波改进算法的锂动力电池散热特性测试研究[J]. 中国测试, 2020, 46(7): 102-107
[5] 赵沁峰, 蔡艳平, 王新军. 基于WOA-ELM的锂离子电池剩余寿命间接预测[J]. 中国测试, 2021, 47(9): 138-145
[6] WU W, WANG S, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281
[7] FATHABADI H. A novel design including cooling media for Lithium-ion batteries pack used in hybrid and electric vehicles[J]. Journal of Power Sources, 2014, 245: 495-500
[8] MOHAMMADIAN S K, ZHANG Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273: 431-439
[9] 刘霏霏, 鲍荣清, 程贤福,等. 服役工况下车用锂离子动力电池散热方法综述[J]. 储能科学与技术, 2021, 10(6): 1-15
[10] 冯能莲, 董士康, 李德壮, 等. 蜂巢式液冷电池模块传热特性的试验研究[J]. 汽车工程, 2020, 42(5): 658-664
[11] GROSU Y, ZHAO Y, GIACOMELLO A, et al. Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials[J]. Applied Energy, 2020, 269: 115088
[12] 于洋, 孔治国, 吴迪, 等. 基于某SUV电动车的能量流分析及续驶里程优化研究[J]. 中国测试, 2020, 46(S1): 133-138
[13] WENG J. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Conversion and Management, 2019, 200: 112071
[14] EL I, KARKRI M, TANKARI M. A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120894
[15] CHEN J, KANG S. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review[J]. Journal of Power Sources, 2019, 442: 227228
[16] 吴韶飞, 闫霆, 蒯子函, 等. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193
[17] LUO X, GUO Q, LI X, et al. Experimental investigation on a novel phase change material composites coupled with graphite film used for thermal management of lithium-ion batteries[J]. Renewable Energy, 2020, 145: 2046-2055
[18] KARIMI G, AZIZI M, BABAPOOR A. Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites[J]. Journal of Energy Storage, 2016, 8: 168-174
[19] 张昆. 低硫膨胀石墨制备工艺与吸附性能研究[D]. 秦皇岛: 燕山大学, 2016.
[20] HUANG R, LI Z, HONG W, et al. Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management[J]. Energy Reports, 2020, 6: 8-19