您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>重力场中油滴运动速度及聚合规律研究

重力场中油滴运动速度及聚合规律研究

317    2024-06-26

¥0.50

全文售价

作者:王智慧1,2,3,4, 廖锐全1,2,3,4, 程阳1,2,3,4, 冯笑雅5, 袁旭1,4, 张兴凯1,2,3,4

作者单位:1. 长江大学石油工程学院,湖北 武汉 430100;
2. 中国石油天然气集团公司采油采气重点实验室长江大学分室,湖北 荆州 434023;
3. 中国石油气举试验基地多相流研究室,湖北 武汉 430100;
4. 油气钻采工程湖北省重点实验室,湖北 武汉 430100;
5. 西安长庆化工集团有限公司,陕西 西安 710021


关键词:油水分离;油滴聚合;变形系数;有限元;表面张力


摘要:

由于油井中后期产量下降,注水开发技术得到广泛应用。为优化注入水水质、净化地层,需提高采出水中的油水分离效率。油水分离效率的高低取决于对油水两相运动规律的掌握及分离方法的正确应用。该研究在油滴运动理论的基础上,借助Fluent有限元模拟软件,对油滴在流场中的变形和聚并动态进行精细描述。通过实验测试重力场中黏度为5.7 mPa·s和54 mPa·s、直径为3.0~8.5 mm的油滴上升速度及其变形规律。研究结果表明:直径较大的油滴具有较大的加速度,并提前达到最大速度,其上浮过程中的变形系数随着油相黏度的增加逐渐增加。多个油滴的聚合及其速度主要受连续相的黏度变化影响。在原有油滴速度计算模型的基础上考虑了表面张力对油滴变形的影响,得到的新模型对油滴的速度计算误差为$ \pm $7%,显著提高了油滴速度的计算精度。


Study on the velocity of oil droplet motion and aggregation law under the action of the gravitational field
WANG Zhihui1,2,3,4, LIAO Ruiquan1,2,3,4, CHENG Yang1,2,3,4, FENG Xiaoya5, YUAN Xu1,4, ZHANG Xingkai1,2,3,4
1. Petroleum Engineering College of Yangtze University, Wuhan 430100, China;
2. CNPC Key Laboratory of Oil and Gas Productions in Yangtze University, Jingzhou 434023, China;
3. CNPC Multiphase Flow Laboratory of Gas Lift Innovation Center, Wuhan 430100, China;
4. Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China;
5. Xi’an Changqing Chemical Group Co., Ltd., Xi’an 710021, China
Abstract: Due to the decline of production in the middle and late stages of oil wells, water injection development technology is widely used. In order to optimize the water quality of injection water and purify the formation, it is necessary to improve the oil-water separation efficiency in the extracted water. The efficiency of oil-water separation depends on the mastery of oil-water two-phase motion law and the correct application of separation methods. In this study, based on the theory of oil droplet motion, the deformation and aggregation dynamics of oil droplets in the flow field are finely described with the help of Fluent finite element simulation software. The rising velocity of oil droplets with viscosities of 5.7 mPa·s and 54 mPa·s and diameters of 3.0 mm to 8.5 mm in the gravitational field and their deformation laws were tested experimentally. The results show that oil droplets with larger diameters have larger acceleration and reach the maximum velocity in advance, and their deformation coefficients in the uplifting process gradually increase with the increase of oil phase viscosity. The aggregation of multiple oil droplets and their velocities are mainly influenced by the viscosity change of continuous phase. On the basis of the original oil droplet velocity calculation model, the influence of surface tension on the deformation of oil droplets is considered, and the error of velocity calculation of oil droplets is $ \pm $7% in the new model obtained, which significantly improves the calculation accuracy of oil droplet velocity.
Keywords: oil-water separation; oil droplet aggregation; deformation coefficient; finite element; surface tension
2024, 50(6):10-19 收稿日期: 2022-12-21;收到修改稿日期: 2023-03-17
基金项目: 国家自然科学基金项目(62173049)
作者简介: 王智慧(1993-),男,甘肃庆阳市人,博士研究生,主要从事油气水三相计量及多相管流研究工作。
参考文献
[1] WANG F C, FENG J T, ZHAO Y P. The head-on colliding process of binary liquid droplets at low velocity: High-speed photography experiments and modeling[J]. Journal of Colloid and Interface Science, 2008, 326(1): 196-200.
[2] WANG F C, YANG F, ZHAO Y P. Size effect on the coalescence-induced self-propelled droplet[J]. Applied Physics Letters, 2011, 98(5): 988.
[3] 肖杰. 海底管线微孔泄漏油滴尺寸与上升速度研究[D]. 大连: 大连理工大学, 2007.
XIAO J. Theresearch on the size and the ascending velocity of oil drops spilling from tiny holes of seabed pipelines[D]. Dalian: Dalian University of Technology, 2007.
[4] GONCHAROV V K, KLEMENTIEVA N Y. Forecasting of the ecological after-effects of the oil and natural gas escapes on the sea environments from pipelines located on seabed[C]//Proc. 6 th Int. Conf. ‘Remote Sensing for Marine and Coastal Environments’, Charleston, 2000, 1: 194-201.
[5] ZHENG L, YAPA P D. Buoyant velocity of spherical and nonspherical bubbles/droplets[J]. Journal of Hydraulic Engineering, 2000, 126(11): 852-854.
[6] PREMATHILAKE L T, YAPA P D, NISSANKA I D, et al. Modeling the flow regime near the source in underwater gas releases[J]. Journal of Marine Science and Application, 2016, 15(4): 433-441.
[7] WU M, GHARIB M. Experimental studies on the shape and path of small air bubbles rising in clean water[J]. Physics of Fluids, 2002, 14(7): L49-L52.
[8] 许明. 小管径多相流特性及流动参数测量研究[D]. 合肥: 中国科学技术大学, 2012.
XU M. Study of multiphase flow characteristics and parameters measurement in small diameter pipe[D]. Hefei: University of Science and Technology of China, 2012.
[9] 丁思源, 王瑞祥, 徐荣吉, 等. 表面张力对自由落体液滴形变的影响[J]. 化工学报, 2016, 67(6): 2495-2502.
DING S Y, WANG R X, XU R J, et al. Effect of surface tension on deformation of free falling drops[J]. CIESC Journal, 2016, 67(6): 2495-2502.
[10] 吕宇玲, 何利民, 丁慎圆. 油水两相流管道内液滴形成过程研究[J]. 化工进展, 2014, 33(3): 558-562.
LV Y L, HE L M, DING S Y. Droplets formation process of oil-water dispersed flows in pipeline[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 558-562.
[11] 李枫, 熊峰, 刘彩玉, 等. 油滴聚并破碎行为对水力旋流器分离性能的影响[J]. 石油机械, 2019(6): 73-78.
LI F, XIONG F, LIU C Y, et al. Effect of oil droplet coalescence and breakup behavior on separation performance of hydrocyclone[J]. China Petroleum Machinery, 2019(6): 73-78.
[12] 张敏霞, 刘涛, 安明明, 等. 油田采出水中油滴的聚结技术与设备[J]. 工业水处理, 2022, 42(3): 33-40.
ZHANG M X, LIU T, AN M M, et al. Coalescence technology and equipment of oil droplets in oil field produced water[J]. Industrial Water Treatment, 2022, 42(3): 33-40.
[13] 李会雄, 杨冬, 陈听宽, 等. Level Set 方法及其在两相流数值模拟研究中的应用[J]. 工程热物理学报, 2001, 22(2): 233-236.
LI H X, YANG D, CHEN T K, et al. A formulation for the level set method and its applications in gas-liquid two-phase flow simulations[J]. Journal of Engineering Thermophysics, 2001, 22(2): 233-236.
[14] 王琳琳, 田辉, 李国君. 基于 Level Set 方法对油水和气水两相界面的数值模拟[J]. 应用力学学报, 2010(2): 298-302.
WANG L L, TIAN H, LI G J. Numerical simulation of oil-water and air-water two-phase flow based on level set methods[J]. Chinese Journal of Applied Mechanics, 2010(2): 298-302.
[15] CHINYOKA T, RENARDY Y Y, RENARDY M, et al. Two-dimensional study of drop deformation under simple shear for Oldroyd-B liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 130(1): 45-56.
[16] 宫翔飞, 张树道, 江松. 界面捕捉 Level Set 方法的 (AMR) 数值模拟[J]. 计算物理, 2006, 23(4): 391.
GONG X F, ZHANG S D, JIANG S. Numerical simulation of fluid interfaces with the adaptive mesh refinement method,the ghost fluid method and the Level Set method[J]. Chinese Journal of Computational Physics, 2006, 23(4): 391.
[17] 高清军. 多种海况下的水下溢油数值模拟[D]. 大连: 大连海事大学, 2008.
GAO Q J. Numerical simulation of the underwater oil spill under a variety of sea conditions[D]. Dalian: Dalian Maritime University, 2008.
[18] 李隆键, 张磊, 朱文冰, 等. 基于 VOSET 方法模拟并排气泡的上升过程[J]. 计算物理, 2015, 32(5): 545.
LI L L, ZHANG L, ZHU W B, et al. Simulation of a pair of bubbles rising side by side using VOSET method[J]. Chinese Journal of Computational Physics, 2015, 32(5): 545.
[19] 王雪丽. 水中油滴运动实验与模拟研究[D]. 河北工业大学, 2017.
WANG X L. Experimentaland simulation study on oil droplet upward movement in water[D]. Tianjin: Hebei University of Technology, 2017.
[20] WELLEK R M, AGRAWAL A K, SKELLAND A H P. Shape of liquid drops moving in liquid media[J]. AIChE Journal, 1966, 12(5): 854-862.
[21] 郭烈锦. 两相与多相流动力学[M]. 西安: 西安交通大学出版社, 2002.
[22] BINKS B P, LUMSDON S O. Pickering emulsions stabilized by monodisperse latex particles: effects of particle size[J]. Langmuir, 2001, 17(15): 4540-4547.
[23] AVEYARD R, BINKS B P, CLINT J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100: 503-546.
[24] LUO X, HUANG X, YAN H, et al. An experimental study on the coalescence behavior of oil droplet in ASP solution[J]. Separation and Purification Technology, 2018, 203: 152-158.
[25] ABEYNAIKE A, DAVIDSON J F, MACKLEY M R. The experimental observation and modelling of film thinning and film retraction during the interfacial coalescence of biodiesel and glycerol droplets[J]. Journal of the American Oil Chemists' Society, 2013, 90: 1049-1062.
[26] RUZICKA M C. On bubbles rising in line[J]. International Journal of Multiphase Flow, 2000, 26(7): 1141-1181.
[27] ZHANG Y, LIU Y, JI R, et al. Discussion of the drop rest phenomenon at millimeter scale and coalescence of droplets at micrometer scale[J]. Journal of dispersion science and technology, 2012, 33(12): 1700-1707.
[28] 许玲丽. 单气泡运动特性分析及曳力模型修正[D]. 徐州:中国矿业大学, 2015.
XU L L. Motion characteristics analysis and drag model correction of single bubble movement[D]. Xuzhou: China University of Mining and Technology, 2015.