您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于ShuffleNet-DELM的轴承故障诊断研究

基于ShuffleNet-DELM的轴承故障诊断研究

278    2024-06-26

¥0.50

全文售价

作者:李睿智, 杨芳华, 张伟, 周旗开

作者单位:军事科学院系统工程研究院,北京 100141


关键词:深度学习;ShuffleNet;深度极限学习机;轴承


摘要:

滚动轴承信号是一种典型的非平稳、非线性数据,深度学习模型能够有效提取此类数据特征。为获得更高的精度,深度学习模型不断增加计算量和参数规模,而工程实际中计算机硬件能力和可供训练的数据有限,更注重较快的响应速度和泛化能力。为解决此类矛盾,提出一种基于ShuffleNet-DELM的轴承故障诊断方法。首先将一维的时序信号变换为二维频域张量,再使用改进的ShuffleNetV2模型提取特征,最后经由深度极限学习机(deep extreme learning machine,DELM)方法进行分类,在不同工况的滚动轴承数据集合上取得95.47%的平均准确率。结果表明:该方法响应速度快,能够进一步提高ShuffleNetV2模型对轴承故障的分类精度和泛化能力,有较好的实用价值。


Research on bearing fault diagnosis based on ShuffleNet-DELM
LI Ruizhi, YANG Fanghua, ZHANG Wei, ZHOU Qikai
Institute of System Engineering, Academy of Military Sciences, Beijing 100141, China
Abstract: Rolling bearing signal is a typical non-stable, non-linear data, and deep learning models can effectively extract such data features. For higher accuracy, the deep learning model continues to increase the amount and parameter scale of the computing and parameters, while the computer hardware capacity and the data available for training are limited in the actual project. A bearing fault diagnosis method based on ShuffleNet-DELM is proposed. First, the one-dimensional time-series signals are transformed into two-dimensional frequency-domain tensors. Then, an improved ShuffleNetV2 model is employed to extract features, followed by classification using the deep extreme learning machine (DELM) method. This approach achieves an average accuracy of 95.47% on a dataset comprising bearing vibration signals under various operating conditions. The results show that the method has a fast response, which can further improve the classification accuracy and generalization of ShuffleNetV2 model for bearing faults, and has greater practical value.
Keywords: deep learning; ShuffleNet; deep extreme learning machine; bearing
2024, 50(6):42-48 收稿日期: 2022-05-12;收到修改稿日期: 2022-07-06
基金项目:
作者简介: 李睿智(1988-),男,山西太原市人,工程师,硕士,研究方向为人工智能和装备故障诊断。
参考文献
[1] GAN M, WANG C, ZHU C. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2016, 72-73: 92-104.
[2] CERRADA M, SANCHEZ R, LI C, et al. A review on data-driven fault severity assessment in rolling bearings[J]. Mechanical Systems & Signal Processing, 2018, 99: 169-196.
[3] 赵朋成, 冯玉田, 涂云轩. 基于高倍特征深度残差网络的手写数字识别[J]. 电子测量技术, 2018, 41(6): 86-89.
ZHAO P C, FENG Y T, TU Y X. Handwritten digital recognition based on high times feature deep residual network[J]. Electronic Measurement Technology, 2018, 41(6): 86-89.
[4] 张西宁, 郭清林, 刘书语. 深度学习技术及其故障诊断应用分析与展望[J]. 西安交通大学学报, 2020, 54(12): 1-13.
ZHANG X N, GUO Q L, LIU S Y . Analysis and prospect of deep learning technology and its fault diagnosis application[J]. Journal of Xi'an Jiaotong University, 2020, 54(12): 1-13.
[5] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient CNN architecture design[C]//Proceedings of the European conference on computer vision (ECCV), 2018.
[6] 杨劼立, 林建辉, 谌亮. 基于MED辅助特征提取CNN模型的列车轴承故障诊断方法[J]. 中国测试, 2020, 46(10): 124-129.
YANG J L, LIN J H, CHEN L. Fault diagnosis method for train bearings based on MED-assisted feature extraction CNN model[J]. China Measurement & Testing Technology, 2020, 46(10): 124-129.
[7] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104.
LEI Y G, JIA F, KONG D T, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104.
[8] 牛罡, 张凯, 郭祥富, 等. 格拉米角场和图卷积神经网络识别复杂电能质量扰动[J]. 中国测试, 2022, 48(7): 169-176.
NIU G, ZHANG K, GUO X F, et al. Complex power quality disturbance identification based on Gramian angular field and graph convolution neural network[J]. China Measurement & Test, 2022, 48(7): 169-176.
[9] Case Western Reserve University Bearing Data Center [EB/OL]. [2018-02-25]. http://csegroups.case.edu/bearingdatacenter/pages/download-data- file.
[10] 邓佳林, 邹益胜, 张笑璐, 等. 一种改进CNN在轴承故障诊断中的应用[J]. 现代制造工程, 2020(4): 142-147.
DENG J L, ZOU Y S, ZHANG X L, et al. Application of an improved CNN in fault diagnosis of bearings[J]. Modern Manufacturing Engineering, 2020(4): 142-147.
[11] ZHANG W, PENG G L, LI C H, et al. A new deep learning model for fault diagnosis with good antinoise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425.
[12] CHOLLET F. Xception: Deep learning with depthwise parable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2017.
[13] ZHANG W, LI C H, PENG G L, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing, 2018, 100: 439-453.
[14] 佘博, 田福庆, 梁伟阁. 基于深度卷积变分自编码网络的故障诊断方法[J]. 仪器仪表学报, 2018, 39(10): 27-35.
SHE B, TIAN F Q, LIANG W G. Fault diagnosis based on a deep convolution variational autoencoder network[J]. Chinese Journal of Scientific Instrument, 2018, 39(10): 27-35.