您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于TMR器件的弱磁传感系统设计

基于TMR器件的弱磁传感系统设计

272    2024-06-26

¥0.50

全文售价

作者:陈棣湘, 李自斌, 杜青法, 胡佳飞, 周卫红

作者单位:国防科技大学智能科学学院,湖南 长沙 410073


关键词:隧道磁电阻(TMR);磁传感系统;磁滞补偿;递推最小二乘(RLS)


摘要:

小型化高性能磁传感系统在磁异探测、航空航天、生物磁测量等领域具有重要的应用前景。传统磁传感系统因体积大、功耗高等原因难以搭载于无人机平台,而隧道磁电阻(TMR)器件是构建小型磁传感系统的理想选择。该文在分析TMR器件磁滞特性及其灵敏度与工作点关系的基础上,提出一种通过稳定TMR器件工作点来实现磁滞补偿的方法,通过建立磁场反馈补偿回路并采用自适应磁场补偿算法,大幅提升磁传感系统的性能。测试结果表明所设计的磁传感系统的测量范围为–10000~10000 nT,线性度为0.016%,噪声水平为0.39 nT/$ \sqrt {{\text{Hz}}} $@1 Hz,带宽为60 Hz,可以满足水下磁异目标探测等应用需求。


Design of weak magnetic field sensing system with TMR components
CHEN Dixiang, LI Zibin, DU Qingfa, HU Jiafei, ZHOU Weihong
College of Intelligence Science and Technology, National University of Defense Technology,Changsha 410073, China
Abstract: The miniaturized magnetic sensing system with high performance has an important application prospect in the fields of magnetic anomaly detection, aerospace, biomagnetic measurement, etc. The traditional magnetic sensing system is difficult to carry on the UAV platform due to its large size and high power consumption, while the tunneling magnetoresistance (TMR) device is an ideal choice for building a small magnetic sensing system. On the basis of analyzing the hysteresis characteristic of TMR device and the relationship between its sensitivity and the working point, a method of hysteresis compensation by stabilizing the working point of TMR device is proposed. By establishing a magnetic field feedback compensation loop and adopting adaptive magnetic field compensation algorithm, the performance of magnetic sensing system is greatly improved. The test results show that the designed magnetic sensing system has a measuring range of –10000 nT to 10000 nT with 0.016% linearity, 0.39 nT/$ \sqrt {{\rm{Hz}}} $@1 Hz noise level and 60 Hz bandwidth, which can meet the application requirements of underwater magnetic anomaly detection.
Keywords: tunneling magnetoresistance (TMR); magnetic sensing system; magnetic hysteresis compensation; recursive least squares (RLS)
2024, 50(6):93-97 收稿日期: 2022-11-27;收到修改稿日期: 2023-01-20
基金项目: 国家自然科学基金项目(51507178, 61671460)
作者简介: 陈棣湘(1970-),男,湖南湘乡市人,教授,博士生导师,主要从事传感与检测领域的研究。
参考文献
[1] 马成功, 李丕丁. 基于磁通门传感器的铁磁探测系统设计[J]. 电子测量技术, 2022, 45(19): 175-180.
MA C G, LI P D . Design of ferromagnetic detection system based on fluxgate sensor[J]. Electronic Measurement Technology, 2022, 45(19): 175-180.
[2] 荆志伟, 裴东兴, 雒茁君. 基于双十字形阵列磁性目标定位算法[J]. 国外电子测量技术, 2022, 41(4): 37-41.
JIN Z W, PEI D X, LUO Z J. Magnetic target localization algorithm based on double cross array[J]. Foreign Electronic Measurement Technology, 2022, 41(4): 37-41.
[3] 谢华江. 高性能磁性传感器集成微系统技术研究[D]. 成都: 电子科技大学, 2022.
XIE H J. High-performance magnetic sensor integrated microsystem technology research[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[4] TUI. MAD_Tow_Qchart for ASQ-233[EB/OL]. http://www.tethers.com/.
[5] 万成彪. 磁异信号检测理论与方法研究[D]. 长沙: 国防科技大学, 2018.
WAN C B. Investigations on the theory and method of magnetic anomaly detection[D]. Changsha: National University of Defense Technology, 2018.
[6] 徐强锋, 王学锋, 邓意成, 等. EIT信号对CPT磁力仪弱磁测量性能的影响[J]. 中国测试, 2021, 47(2): 170-176.
XU Q F, WANG X F, DENG Y C, et al. Influence of EIT signal on weak magnetic measurement performance of CPT magnetometer[J]. China Measurement & Test, 2021, 47(2): 170-176.
[7] AUSTER H U, GLASSMEIER K H, MAGNES W, et al. The THEMIS fluxgate magnetometer[J]. Space Science Reviews, 2008, 141(1): 235-264.
[8] GLASSMEIER K H, RICHTER I, DIEDRICH A, et al. RPC-MAG The fluxgate magnetometer in the ROSETTA plasma consortium[J]. Space Science Reviews, 2007, 128(1): 649-670.
[9] 吕华, 刘明峰, 曹江伟, 等. 隧道磁电阻(TMR)磁传感器的特性与应用[J]. 磁性材料及器件, 2013, 43(3): 1-4.
LV H, LIU M F, CAO J W, et al. Performance and applications of magnetic sensors based on TMR effect[J]. Journal of Magnetic Materials and Devices, 2013, 43(3): 1-4.
[10] DU Q F, HU J F, PAN M C, et al. Effect of magnetic flux modulation on noise characteristics of tunnel magnetoresistive sensors[J]. Appl. Phys. Lett., 2020, 116(10): 102405.
[11] HU J F, DU Q F, ZHANG J S, et al. Dynamic noise characteristics of tunneling magnetoresistance sensor under AC excitation[J]. AIP Advances, 2022, 12(2): 025318.
[12] 孙琨, 潘孟春, 胡靖华, 等. 面向磁阻传感器的低噪声磁滞补偿系统[J]. 传感器与微系统, 2018, 37(9): 44-46.
SUN K, PAN M C, HU J H, et al. Low-noise hysteresis compensation system for magnetoresistive sensors[J]. Transducer and Microsystem Technologies, 2018, 37(9): 44-46.
[13] 李自斌. 基于TMR的磁传感系统研究[D]. 长沙: 国防科技大学, 2022.
LI Z B. Research on magnetic sensing system based on tunneling magnetoresistance [D]. Changsha: National University of Defense Technology, 2022.