您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>轴向应变放大式谐振温度传感器研究

轴向应变放大式谐振温度传感器研究

283    2024-06-26

¥0.50

全文售价

作者:滕飞

作者单位:中国飞行试验研究院,陕西 西安 710089


关键词:轴向应变放大;频率温度系数;谐振式温度传感器;高灵敏度


摘要:

试验机专用改装系统成为开展民机适航、审定试飞的重要手段之一。为进一步提升系统性能,满足高精度高可靠性要求,该文提出一种基于轴向应变放大结构的谐振式温度传感器。基于应变放大结构建立频率-温度模型,推导频率温度系数作为衡量灵敏度的物理量。为降低理论模型与仿真模型的相对误差,该文进行仿真分析与误差修正,将二者误差降低至0.5%。测试结果表明,当外界温度在273~293 K范围内变化时,器件的频率温度系数为13104×10−6 K–1,仿真结果为12935×10−6 K–1,二者相比,相对误差为1.3%。与以往谐振式温度传感器比较,相对灵敏度最大提高了83倍。该结构可用于高灵敏度谐振式温度传感器的优化设计,满足试验机改装系统的应用需求。


Research on resonant temperature sensor with axial strain amplification
TENG Fei
Chinese Flight Test Establishment, Xi’an 710089, China
Abstract: The special modification system of the testing machine becomes one of the important means to carry out civil aircraft airworthiness and certification test flight. In order to further improve the system performance and meet the requirements of high accuracy and reliability, a resonant temperature sensor based on axial strain amplification structure is proposed. In this paper, a frequency-temperature model is established based on strain amplification structure, and the frequency-temperature coefficient is derived as a physical quantity to measure sensitivity. In order to reduce the relative error of theoretical model and simulation model, simulation analysis and error correction are carried out, and the relative error of both is reduced to 0.5%. The test results show that when the external temperature changes in the range of 273-293 K, the frequency-temperature coefficient of the device is 13104×10-6 K–1, while the simulation result is 12935×10-6 K–1, the relative error between the two is 1.3%, and the sensitivity is increased by 83 times compared with the previous resonant temperature sensor. The structure can be used to optimize the design of high sensitivity resonant temperature sensor and meet the application requirements of testing machine modification system.
Keywords: axial strain amplification; frequency-temperature coefficient; resonant temperature sensor; high sensitivity
2024, 50(6):111-116 收稿日期: 2023-12-25;收到修改稿日期: 2024-02-26
基金项目:
作者简介: 滕飞(1981-),男,陕西延安市人,高级工程师,硕士,研究方向为试验机改装。
参考文献
[1] JIANG B, HUANG S, ZHANG J, et al. Analysis of frequency drift of silicon MEMS resonator with temperature[J]. Micromachines, 2020, 12(1): 26.
[2] SHCHEGLOV K, EVANS C, GUTIERREZ R, et al. Temperature dependent characteristics of the JPL silicon MEMS gyroscope[C]//2000 IEEE Aerospace Conference. IEEE, 2002.
[3] 梁嘉琪, 董浩斌, 葛健. 多传感器高准确度便携式温度测量仪[J]. 中国测试, 2016, 42(5): 70-74.
LIANG J Q, DONG H B, GE J, et al. High-precision portable temperature measurement system based on three kinds of sensors[J]. China Measurement & Test, 2016, 42(5): 70-74.
[4] PRIKHODKO I P, TRUSOV A A, SHEKEL A M. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing[J]. Sensors and Actuators A: Physical, 2013, 201:517-524.
[5] FILIPE A, VINCENT M, VOLANT V, et al. Impact of die-attachmaterials on MEMS gyro performance[C]//International Symposium on Inertial Sensors and System. Laguna Beach, 2014.
[6] 徐军, 孟月霞, 刘春花, 等. 石英音叉温度传感器测试系统[J]. 哈尔滨理工大学学报, 2017, 22(2): 44-49.
XU J, MENG Y X, LIU C H, et al. Testsystem for quartz tuning fork temperature sensor[J]. Journal of HARBIN University of Science and Technology, 2017, 22(2): 44-49.
[7] 李城鑫. 基于参数泵浦调制的谐振式MEMS温度传感器[D]. 武汉: 华中科技大学, 2021.
LI C X. Resonant MEMS temperature sensor based on parametric modulation[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[8] 薛程颢. 钼铼合金超声导波谐振式温度传感器及系统设计[D]. 太原: 中北大学, 2022.
XUE C H. Design of ultrasonic guided wave resonance temperature Sensor and system based on Mo-Re alloy[D]. Taiyuan: North University of China, 2022.
[9] 田力. 超声导波谐振测温仪设计[D]. 太原: 中北大学, 2021.
TIAN L. Design of ultrasonic guided wave resonant thermometer[D]. Taiyuna: North University of China, 2021.
[10] KOSE T, AZGIN K, AKIN T. Design and fabrication of a high performance resonant MEMS temperature sensor[J]. Journal of Micromechanics and Microengineering, 2016, 26(4): 045012.
[11] 李飞龙. 基于RF MEMS压电谐振器的无线传感技术研究[D]. 成都: 电子科技大学, 2022.
LI F L. Research on wireless sensing technology based on rf mems piezoelectric resonator[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[12] LI Z K, HEBIBUL R, ZHAO L B, et al. Capacitive micromachined ultrasonic transducer as a resonant temperature sensor[J]. Instrumentation, 2014, 1(3): 67-74.