您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>响应面法纤维网格布强化混凝土配比设计

响应面法纤维网格布强化混凝土配比设计

279    2024-06-26

¥0.50

全文售价

作者:江帆1, 许巍2, 张俊2, 仇念源3, 卢杨3, 叶晖3, 王明琨3

作者单位:1. 海军研究院,北京 100070;
2. 空军工程大学航空工程学院,陕西 西安 710038;
3. 95979部队,山东 泰安 271000


关键词:机场道面;表层强化;纤维网格布;响应面法;配合比设计


摘要:

针对机轮磨耗、飞机尾喷等强外部作用对机场道面表层损坏严重的问题,提出采用纤维网格布对道面混凝土表层进行强化。为设计出最优配合比,以飞机尾喷和紫外线照射作为环境作用,采用响应面法设计耐磨耗试验和抗冻试验,对纤维网布尺寸、砂率和细度模数因素对强化混凝土耐磨耗和抗冻性能的影响进行分析,以此对混凝土配合比进行优化设计。结果表明:二次或三次模型拟合效果较好,模型较为显著;纤维网格布尺寸对强化混凝土性能影响最大,其次是细度模数,最后是砂率,尺寸和砂率、细度模数交互作用影响明显。当纤维网布尺寸为3 mm×3 mm,砂细度模数为2.8,砂率为0.28~0.31时,强化混凝土的性能最佳。


Mix design of fiber mesh reinforced concrete based on response surface method
JIANG Fan1, XU Wei2, ZHANG Jun2, QIU Nianyuan3, LU Yang3, YE Hui3, WANG Mingkun3
1. Naval Research Institute, Beijing 100070, China;
2. College of Aeronautical Engineering, Air Force Engineering University, Xi′an 710038, China;
3. PLA Unit 95979, Tai′an 271000, China
Abstract: To solve the problem of the serious damage of airport pavement surface caused by strong external effects such as wheel wear and aircraft tail spray, fiber grid cloth is proposed to strengthen the pavement concrete surface. In order to design the optimal mix proportion, taking aircraft tail spray and ultraviolet radiation as environmental effects, the wear resistance test and frost resistance test are designed by using response surface method. The effects of fiber mesh size, sand rate and fineness modulus on the wear resistance and frost resistance of reinforced concrete are analyzed, so as to optimize the concrete mix proportion. The results show that the fitting effect of quadratic or cubic model is good, and the model is significant. The size of fiber mesh has the greatest influence on the performance of reinforced concrete, followed by fineness modulus, and finally sand ratio, and the interaction of size, sand rate and fineness modulus is obvious. The performance of reinforced concrete has the best performance when the fiber mesh size is 3 mm×3 mm, the sand fineness modulus is 2.8 and the sand ratio is 0.28-0.31.
Keywords: airport pavement; surface strengthening; fiber mesh; response surface method; mix design
2024, 50(6):148-156,190 收稿日期: 2021-11-11;收到修改稿日期: 2022-05-26
基金项目: 国家重点研发计划(重点专项2022-3.2);陕西省自然科学基础研究计划(2023-JC-YB-375);海军研究院青年创新基金(NA-J201902-JJ0-HF001)
作者简介: 江帆(1983-),男,北京市人,工程师,硕士,主要研究方向为机场道面工程。
参考文献
[1] 胡成, 翁兴中, 朱懋江, 等. 纤维网格布表层强化混凝土抗冻性能[J]. 河海大学学报(自然科学版), 2021, 49(1): 84-92.
HU C, WENG X Z, ZHU M J, et al. Frost resistance performance of surface reinforced concrete with fiber mesh[J]. Journal of Hohai University (Natural Sciences), 2021, 49(1): 84-92.
[2] 朱懋江, 翁兴中, 高瑞, 等. 机场道面混凝土表面强化材料的性能研究[J]. 山东农业大学学报(自然科学版), 2018, 49(2): 295-302.
ZHU M J, WENG X Z, GAO R, et al. Study on performance of reinforced concrete material for airport pavement[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2018, 49(2): 295-302.
[3] 陈首, 石少卿, 肖颖杰, 等. 金属网增强混凝土抗低速冲击试验与数值模拟研究[J]. 中国测试, 2021, 47(4): 136-143.
CHEN S, SHI S Q, XIAO Y J, et al. Experimental and numerical study on low speed impact resistance of metal mesh reinforced concrete[J]. China Measurement & Test, 2021, 47(4): 136-143.
[4] 李悦媛, 许巍, 张俊, 等. 纤维网格布表层强化混凝土的早期开裂特性[J]. 河海大学学报(自然科学版), 2022, 50(6): 114-122.
LI Y Y, XU W, ZHANG J, et al. Early cracking characteristics of concrete strengthened with fiber mesh[J]. Journal of Hohai University (Natural Sciences), 2022, 50(6): 114-122.
[5] 言兴. GRC网格布与聚丙烯砼复合加固短圆柱试验研究及理论分析[D]. 长沙: 湖南科技大学, 2018.
YAN X. Experimental study and theoretical analysis of short cylinder reinforced with GRC mesh and polypropylene concrete[D]. Changsha: Hunan University of Science and Technology, 2018.
[6] 丁一宁, 菅淑敏, 李冬. 玻璃纤维网格布的耐碱性能及其对混凝土板双向受弯性能的影响[J]. 复合材料学报, 2019, 36(4): 954-963.
DING Y N, JIAN S M, LI D. Alkaline resistance of glass fiber meshes and its effect on biaxial flexural behavior of concrete slabs[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 954-963.
[7] 封雷, 封叶, 王庆华. 玻璃纤维网格布增强复合保温墙板的保温性能和力学性能研究[J]. 新型建筑材料, 2016, 3: 73-76.
FENG L, FENG Y, WANG Q H. Study on insulation and mechanical properties of the composite insulation wallboard reinforced by fiberglass mesh[J]. New Building Materials, 2016, 3: 73-76.
[8] 刘敬福, 徐平, 于英华. 玻璃纤维网格布增强聚合物矿物混凝土组分优化[J]. 非金属矿, 2014, 37(5): 8-10.
LIU J F, XU P, YU Y H. Optimization of component in polymer mineral concrete reinforced by glass fiber mesh[J]. Non-Metallic Mines, 2014, 37(5): 8-10.
[9] 王庆轩, 丁一宁. 玄武岩纤维耐碱性能及其网格布对混凝土的增强效应[J]. 建筑材料学报, 2021, 24(1): 54-62.
WANG Q X, DING Y N. Alkali resistance of basalt fiber and strengthening effect of its textile on concrete[J]. Journal of Building Materials, 2021, 24(1): 54-62.
[10] 廖瑜, 石少卿, 梁朝科, 等. 聚脲-编织玻璃纤维网格布复合材料加固钢板抗冲击力学性能研究[J]. 兵工学报, 2018, 39(10): 1988-1996.
LIAO Y, SHI S Q, LIANG C K, et al. Dynamics performances of polyurea-woven fiberglass mesh composite reinforced steel plate subjected to shock waves[J]. Acta Armamentarii, 2018, 39(10): 1988-1996.
[11] 张勇超. 纤维网格布的耐腐蚀性及其对混凝土力学性能的影响[D]. 大连: 大连理工大学, 2016.
ZHANG Y C. Investigation on fiber mesh corrosion resistance and its effect on mechanical properties of concrete[D]. Dalian: Dalian University of Technology, 2016.
[12] 姜乐, 翁兴中, 李强, 等. 基于表面性能导向的机场道面混凝土最优配合比设计[J]. 公路工程, 2017, 42(6): 94-99.
JIANG L, WENG X Z, LI Q, et al. Optimum mix retio design of airport pavement concrete based on surface performance oriented[J]. Highway Engineering, 2017, 42(6): 94-99.
[13] LONG X, CAI L, LI W. RSM-based assessment of pavement concrete mechanical properties under joint action of corrosion, fatigue, and fiber content[J]. Construction and Building Materials, 2019, 197: 406-420.
[14] 刘雪, 吴莉蔚, 杨勇, 等. 牦牛酸奶加工工艺参数优化及其品质分析[J]. 中国测试, 2023, 49(6): 68-74.
LIU X, WU L W, YANG Y, et al. The processing parameter optimization of yak yogurt and its quality analysis[J]. China Measurement & Test, 2023, 49(6): 68-74.
[15] 吴永根, 张泽垚, 刘庆涛, 等. 运用响应面法的无机聚合物混凝土性能分析[J]. 空军工程大学学报(自然科学版), 2017, 18(3): 92-98.
WU Y G, ZHANG Z Y, LIU Q T, et al. Study on performance of inorganic polymer concrete based on response surface methodology[J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(3): 92-98.