您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>高温霍普金森拉杆实验技术研究进展

高温霍普金森拉杆实验技术研究进展

4434    2018-10-29

免费

全文售价

作者:李尚昆1,2, 胡文军1,2, 徐伟芳1,2, 黄西成1,2, 谢若泽1,2, 陈军红1,2

作者单位:1. 中国工程物理研究院总体工程研究所, 四川 绵阳 621999;
2. 工程材料与结构冲击振动四川省重点实验室, 四川 绵阳 621999


关键词:高温霍普金森拉杆;高温;实验技术;快速自组装系统


摘要:

高温霍普金森拉杆(SHTB)技术被认为是一种测试材料在高温、102~104 s-1应变率范围内力学性能行之有效的手段。从拉伸波的产生方式、高温动态拉伸实验方法、试样的连接方式和尺寸等方面,对现有的高温SHTB实验技术进行总结和评述,认为其关键在于解决高温对波导杆的影响。现有的方案主要是通过快速加热或快速组装的方式来缩短高温试件与波导杆接触的时间,从而减小波导杆上的温度梯度。在介绍分析两种方案后认为:局部快速加热方法易于实现,但实验中试件的温度一般不超过800℃;快速组装方法实现的实验温度可达1 200℃,但需要一套较为复杂的气动装置。


Research progress on SHTB experiment technique at elevated temperature

LI Shangkun1,2, HU Wenjun1,2, XU Weifang1,2, HUANG Xicheng1,2, XIE Ruoze1,2, CHEN Junhong1,2

1. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
2. Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang 621999, China

Abstract: The split Hopkinson tension bar (SHTB) experiment technique is thought as an efficient way to evaluate the dynamic tension properties in the range of strain rates from 102-104 s-1 at elevated temperature. The features of SHTB experiment technique at elevated temperature are summarized and reviewed from the aspects of the generation of tensile wave, elevated temperature dynamic tensile test method, specimen connection mode and size. It is considered that the key problem is to solve the influence of elevated temperature on waveguide rod. The existing schemes mainly shorten the contact time between the high temperature specimen and the waveguide rod by means of rapid heating or rapid assembly, thereby reducing the temperature gradient on the waveguide rod. The merits and demerits of those methods have been analyzed. The rapid heating method is easier to carry out, but it is only suit for the temperature no more than 800℃. And the rapid assembly method can achieve more than 1 200℃, but it needs a complicated actuator and hard to realize.

Keywords: SHTB;elevated temperature;experiment technology;synchronically actuator assembled system

2018, 1900-02-12(10): 35-42  收稿日期: 2018-04-24;收到修改稿日期: 2018-05-19

基金项目: 国家自然科学基金(11472257,11572299);中物院创新基金(2017cxj07)

作者简介: 李尚昆(1992-),男,河南新乡市人,硕士,主要从事冲击动力学、固体力学研究

参考文献

[1] 陈荣, 卢芳云, 林玉亮, 等. 分离式Hopkinson压杆实验技术研究进展[J]. 力学进展, 2009, 39(5):576-587.
[2] HOPKINSON J. Further experiments on the rupture of iron wire[D]. Cambridge:Cambridge Univ Press, 1901.
[3] DAVIS E. The effect of the speed of stretching and the rate of loading on the yielding of mild steel[J]. ASME, 1938, 60:A137-140.
[4] KOLSKY H. An investigation of the mechanical properies of materials at very high rates of loading[J]. Proceedings of the Physical Society B, 1949, 62(11):676-700.
[5] HARDING J, WOOD E O, CAMPBELL J. Tensile testing of materials at impact rates of strain[J]. J Mech Engng Sci, 1960, 2(2):88-96.
[6] 王瑞峰, 卢芳云, 林玉亮, 等. 动态拉伸实验数据处理方法的改进及应用[J]. 国防科技大学学报, 2007, 29(3):31-34.
[7] NICHOLAS T. Tensile testing of materials at high rate of strain[J]. Experimental Mechanics, 1981, 21(5):177-185.
[8] 夏源明, 袁建明. 摆锤式块杆型冲击拉伸实验装置的动力学系统的简化分析[J]. 力学学报, 1991, 23(2):2117-223.
[9] 李运良, 门朝举, 谭书舜, 等. 摆锤式间接杆-杆型SHTB装置的研制及FEM仿真分析[J]. 工程力学, 2011, 28(5):245-256.
[10] 宋吉舟, 夏源明. 弹塑性材料滤波作用的研究[J]. 实验力学, 2004, 19(4):469-476.
[11] ELEICHE A M, DUFFY J. Effects of temperature on the static and dynamic stress-strain characteristics in torsion of 1100-0 aluminum[J]. Int J Mech Sci, 1975, 17:85-95.
[12] BACON C, BRUN A. Methodology for a Hopkinson bar test with a non-uniform viscoelastic bar[J]. Int J Impact Engng, 2000, 24(3):219-230.
[13] CHIDDISTER J L, MALVERN L E. Compression-impact testing of aluminum at elevated temperatures[J]. Exper Mech, 1963, 3(4):81-90.
[14] LINDHOLM U S, YEAKLEY L M. High strain rate testing:Tension and compression[J]. Exper Mech, 1968, 8:1-9.
[15] 姜锡权, 胡时胜.霍普金森杆实验技术发展综述[C]//Hopkinson杆实验技术研讨会会议论文集, 2007.
[16] LENNON A M, RAMESH K T. A technique for measuring the dynamic behavior of materials at high temperatures[J]. Int J Plast, 1998, 14:1279-1292.
[17] 卢芳云, 陈荣, 林玉亮, 等.霍普金森杆实验技术[M]. 北京:科学出版社, 2013.
[18] ROSENBERG Z, DAWICKE D, STRADER E, et al. A new technique for heating specimens in Split-Hopkinson-Bar experiments using induction-coil heaters[J]. Experimental Mechanics, 1986, 26(3):275-278.
[19] 张方举, 谢若泽, 胡文军, 等. 一种改进的金属材料的高温动态拉伸实验技术[J]. 实验力学, 2011, 26(6):750-754.
[20] MACDOUGALL D. A radiant heating method for performing high-temperature high-strain-rate tests[J]. Measurement Science and Technology, 1998, 9(10):1657-1662.
[21] SEO S, MIN O, YANG H. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J]. International Journal of Impact Engineering, 2005, 31(6):735-754.
[22] 昝祥, 陈晓宏, 黄文, 等. 高温冲击拉伸实验中的快速接触加温技术[J]. 实验力学, 2005, 20(3):321-327.
[23] HAUNG W, ZAN X, NIE, et al. Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures[J]. Materials Science & Engineering A, 2007, 443(1/2):33-41.
[24] 陈晓宏, 吴衡毅, 黄文, 等. 高温冲击拉伸实验技术[J]. 实验力学, 2003, 18(1):39-45.
[25] 尚兵, 王彤彤, 庄茁. 高温SHPB实验温度修正的差分方法[J]. 高压物理学报, 2010, 24(3):219-224.
[26] 夏开文, 刘文彦, 唐志平. 30CrMnSiA的高温动态力学性质的实验研究[J]. 爆炸与冲击, 1998, 18(4):310-316.
[27] 夏开文, 程经毅, 胡时胜. SHPB装置应用于测量高温动态力学性能的研究[J]. 实验力学, 1998, 13(3):307-313.
[28] 张方举, 谢若泽, 田常津, 等. SHPB系统高温实验自动组装技术[J]. 实验力学, 2005, 20(2):281-284.
[29] 谢若泽, 张方举, 颜怡霞, 等. 高温SHPB实验技术及其应用[J]. 爆炸与冲击, 2005, 25(4):330-334.
[30] NEMAT-NASSER S, ISAACS J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta W alloys[J]. Acta Materialia, 1997, 45(3):907-919.
[31] 李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下的Hopkinson杆系统[J]. 爆炸与冲击, 2005, 25(6):487-492.
[32] FRANTZ C, FOLLANSBEE P, WRIGHT W J. New experimental techniques with the split Hopkinson pressure bar[C]//Proceedings on 8th Int Conf High Energy Rate, 1984.
[33] WANG J J, GUO W G, LI P H, et al. Dynamic tensile properties of a single crystal Nickel-base superalloy at high temperatures measured with an improved SHTB technique[J]. Materials Science & Engineering A, 2016, 670:1-8.
[34] TAN X, GUO W G, GAO X, et al. A new technique for conducting split hopkinson tensile bar test at elevated temperatures[J]. Experimental Techniques, 2017, 41(2):191-201.
[35] LI Y L, GUO Y Z, HU H T, et al. A critical assessment of high-temperature dynamic mechanical testing of metals[J]. International Journal of Impact Engineering, 2009, 36(2):177-184.
[36] 胡时胜, 邓德涛, 任小彬. 材料冲击拉伸实验的若干问题探讨[J]. 实验力学, 1998, 13(1):9-14.
[37] 宋顺成, 田时雨. Hopkinson冲击拉杆的改进和应用[J]. 爆炸与冲击, 1992, 12(1):62-67.
[38] 陈小安, 宋顺成. 研究金属材料高温动态拉伸性能新方法[J]. 应用基础与工程科学学报, 2012, 20(2):321-328.
[39] 黄文. 纯钛高温动态拉伸力学性能研究[D]. 合肥:中国科学技术大学, 2006.
[40] 宫旭辉. 高温环境下α+β钛合金的动态拉伸力学行为-测试、分析与表征[D]. 合肥:中国科学技术大学, 2010.
[41] CHEN X, LI Y L. An experimental technique on the dynamic strength of adhesively bonded single lap joints[J]. Journal of Adhesion Science and Technology, 2010, 24(2):291-304.
[42] STAAB G H, GILAT A. A direct-tension split Hopkinson bar for high strain-rate[J]. Testing Exp Mech, 1991, 31(3):232-235.
[43] 王从约. 杆-杆型冲击拉伸实验系统的动力学数值分析[D]. 合肥:中国科学技术大学, 1996.
[44] 徐伟芳, 钟卫州, 陈刚, 等. 冲击拉伸实验试件几何尺寸的研究[J]. 爆炸与冲击, 2008, 28(2):149-153.
[45] 徐伟芳. 冲击拉伸实验技术及其在铝镁合金上的应用[D]. 绵阳:中国工程物理研究院, 2002.