您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>小型无人船阻力CFD模拟方法

小型无人船阻力CFD模拟方法

3493    2018-12-27

免费

全文售价

作者:肖国权, 李天成, 黎日升, 洪晓斌

作者单位:华南理工大学机械与汽车工程学院, 广东 广州 510641


关键词:无人船;数值模拟;CFD;水动力阻力


摘要:

该文基于SolidWorks设计某无人船外型结构,建立无人船水动力学CFD模型,研究吃水深度、航速及流速方向等因素对船体流动阻力的影响。结果表明:吃水深度从4 cm增加到16 cm时,船舶速度减小,压力增大, 所受到的水动力阻力从0.25 N增加到4.58 N;船舶航速在0.25~1.25 m/s时,压力和阻力无明显变化, 1.25~2 m/s时,阻力从2.07 N急剧增加到66.90 N;航速与水速夹角从0增大至90时,速度减小,压力先增后减,阻力不断增大。该研究可为无人船的航线规划及安全航行的控制提供参考。


CFD simulation method on resistance of small unmanned ship

XIAO Guoquan, LI Tiancheng, LI Risheng, HONG Xiaobin

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China

Abstract: In this paper, the outline structure of an unmanned ship is designed based on SolidWorks and its hydrodynamic CFD model is established, in order to study the effects of draft depth, speed and direction of flow on hull flow characteristics. The results show that, when the draft depth increases from 4 cm to 16 cm, the ship speed decreases and the pressure increases, and the hydrodynamic resistance increases from 0.25 N to 4.58 N.When the speed of a ship is 0.25-1.25 m/s, the pressure and resistance do not change significantly, while the speed is 1.25-2 m/s, the resistance increases sharply from 2.07 N to 66.90 N. When the angle between ship speed and water speed increases from 0 to 90 degrees, the speed decreases, the pressure increases firstly and then decreases at 45 degrees, and the resistance increases continuously. This study can provide reference for route planning and safe navigation control of unmanned ships.

Keywords: unmanned ship;numerical simulation;CFD;hydrodynamic resistance

2018, 44(12): 69-74  收稿日期: 2018-10-11;收到修改稿日期: 2018-11-13

基金项目: 广州市科技计划项目(201802020031,201802020009)

作者简介: 肖国权(1978-),男,湖南洞口县人,讲师,博士,研究方向为无人船优化设计

参考文献

[1] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京:清华大学出版社, 2004:1-3
[2] 李勇跃, 张良, 许晶. 基于CFD的海工支持船纵倾优化[J]. 船舶工程, 2017, 39(S1):49-52
[3] 陈一凡. 基于CFD的船舶水动力计算及操纵运动仿真[D].大连:大连海事大学, 2017.
[4] 张圣东, 杨秀英, 黄强, 等. 波浪载荷作用下船体大变形对尾轴承负荷的影响[J]. 船舶工程, 2018, 40(S1):69-74
[5] 熊杨婷. CFD技术在船舶力学形态优化中的应用[J]. 舰船科学技术, 2018, 40(4):31-33
[6] 王易晨. 基于CFD的船舶阻力预报[J]. 黑龙江科技信息, 2017(3):56
[7] 贾宝柱, 纪然, 杨德才. 基于CFD的海洋工程船舶流载荷特性仿真[J]. 舰船科学技术, 2018, 40(19):82-86,92
[8] 邵峰, 金久才, 张杰. 无人船FLUENT阻力模拟与试验验证[J]. 海洋技术学报, 2014, 33(5):8-12
[9] 陶毅涵. 基于CFD的规则波中船舶波浪力模型研究[D].大连:大连海事大学, 2014.
[10] 韩思奇, 邵欣, 檀盼龙, 等. 基于FLUENT下双声道超声波流量计最优声道研究[J]. 中国测试, 2018, 44(8):140-146
[11] 杨剑锋, 黄创绵, 李小兵, 等. 面向环境适应性的无人机飞行姿态模拟器设计与仿真[J]. 中国测试, 2018, 44(8):125-131
[12] YAO Z L, CHEN C H. Application of the improved collaborative optimization on ships' conceptual design[J]. Chuan Bo Li Xue/Journal of Ship Mechanics, 2014, 18(12):1453-1459