您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>改进频域空间域方法在飞行颤振试验中的应用

改进频域空间域方法在飞行颤振试验中的应用

946    2023-03-23

免费

全文售价

作者:闫轲, 刘立坤

作者单位:中国飞行试验研究院飞机所,陕西 西安 710072


关键词:频域空间域方法;颤振飞行试验;自回归模型;模态参数辨识;大气紊流激励


摘要:

传统的频域空间域方法由于使用周期图谱估计,阻尼识别的精度无法保证。为提高对有限的试飞数据进行阻尼识别的精度,保证飞行颤振试验能够安全高效开展。主要研究结合自回归模型谱估计代替周期图谱估计的改进频域空间域方法在颤振试飞中的应用技术,针对大气紊流激励结构响应数据,讨论自回归模型阶次、谱估计方法等对小阻尼情况模态参数辨识精度的影响。对仿真信号和颤振飞行试验实际信号应用不同的数据处理方法进行对比验证,分析结果表明,采用合理的参数,改进的频域空间域方法能够有效辨识结构模态参数,具有一定的工程适用性。


Applications of improved frequency and spatial domain decomposition method in flight flutter tests
YAN Ke, LIU Likun
Aircraft Flight Test Technology Institute, CFTE, Xi’an 710072, China
Abstract: The traditional frequency and domain spatial domain decomposition method uses spectrum estimation, so the accuracy of damping recognition cannot be guaranteed. In order to improve the accuracy of damping recognition of limited flight test data, to ensure that the flight flutter test can be carried out safely and efficiently. The application of an improved frequency and spatial domain decomposition method was researched in the data process of the aircraft flight flutter tests. The influence of auto-regressive model order and spectrum estimate method in the small damping modal parameters identification process was discussed. Simulation signal and flight flutter test signal was compared with different data process method. Results showed that the improved frequency and spatial decomposition method can effectively identify the structure modal parameters, improved the accuracy of the data process and have certain engineering practicality.
Keywords: frequency and spatial domain decomposition method;flight flutter test;auto-regressive model;modal parameters identification;atmospheric turbulence excitation
2023, 49(3):20-24  收稿日期: 2022-07-31;收到修改稿日期: 2022-09-29
基金项目:
作者简介: 闫轲(1994-),男,陕西宝鸡市人,工程师,硕士,主要研究方向为飞机颤振飞行试验
参考文献
[1] 尹传家. 飞行器的颤振[M]. 北京: 原子能出版社, 2007.
[2] 王东森, 王彤, 卢晓东, 等. 频域主分量模态分析法及在颤振试飞中的应用[J]. 中国测试, 2013, 39(6): 89-92
[3] 谢春稳, 杨文平, 郝新纲, 等. 基于振动特性仿真的机翼单向阀试验改进[J]. 中国测试, 2020, 46(10): 130-137
[4] 任波, 杨啟梁, 胡溧. 某重型变速器壳体的动态特性分析[J]. 中国测试, 2019, 45(7): 51-55
[5] 傅志方, 华宏星. 模态分析理论与应用[M]. 上海: 上海交通大学出版社, 2000: 132-207.
[6] REYNDERS E. System identification methods for (operational) modal analysis: Review and comparison[J]. Archives of Computational Methods in Engineering, 2012, 19(1): 51-124
[7] 刘立坤, 霍幸莉, 王东森, 等. 曲线拟合频域分解法在颤振试飞中的应用[J]. 飞行力学, 2019, 37(1): 85-88
[8] BRANDT A. A signal processing framework for operational modal analysis in time and frequency domain[J]. Mechanical Systems & Signal Processing, 2019, 115: 380-393
[9] 王彤, 张令弥. 运行模态分析的频域空间域分解法及其应用[J]. 航空学报, 2006, 27(1): 62-66
[10] 杭晓晨, 蒋令闻, 顾明华, 等. 频域分解模态识别方法的阻尼识别精度研究[J]. 振动工程学报, 2015(4): 518-524
[11] 陈宇, 陈怀海, 李赞澄, 等. 时变AR模型的一种定阶方法[J]. 振动与冲击, 2012(8): 158-163
[12] BALDELLI D H, JIE Z, LIND R, et al. Flutter-prediction tool for flight-test-based aeroelastic parameter-varying models[J]. Journal of Guidance Control and Dynamics, 2009, 32(1): 158-171