您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>应用改进曼哈顿距离的金属超声辨识研究

应用改进曼哈顿距离的金属超声辨识研究

466    2024-05-24

免费

全文售价

作者:王杰1, 贺升平2, 贺西平1, 周越1, 刘昱1

作者单位:1. 陕西师范大学 陕西省超声重点实验室,陕西 西安 710119;
2. 四川省泸州市 96038部队,四川 泸州 646000


关键词:超声波;金属样品;防伪辨识;改进曼哈顿距离;阈值


摘要:

超声波与金属样品的显微结构相互作用而发生散射和反射等效应,造成声波能量的损失。将超声波信号与金属样品的显微组织和晶体结构联系起来,提出“超声指纹”这一概念。每个金属样品的“超声指纹”都是独一无二的,对已知的标准样品采样并留存其“超声指纹”,相当于为其贴上“防伪标签”。以3类成分相近的金属样品以及每类7个成分相同的金属样品为例,利用超声相控阵的扇形扫查方式进行信号采样。将改进曼哈顿距离作为指纹特征,结合高斯分布原理和三倍标准差法计算标准样品的辨识阈值,相较于以前的阈值计算方法更加科学合理。测试结果表明,提出的方法能够对成分相近金属样品甚至成分相同的金属样品全部实现准确辨识。


Research on ultrasonic identification of metals based on improved Manhattan distance
WANG Jie1, HE Shengping2, HE Xiping1, ZHOU Yue1, LIU Yu1
1. Shaanxi Key Laboratory of Ultrasoinc, Shaanxi Normal University, Xi'an 710119, China;
2. Sichuan Province Luzhou City 96038 Troops, Luzhou 646000, China
Abstract: Ultrasonic waves interact with the microstructure of metal samples and scattering and reflection effects occur, resulting in a loss of sound energy. The ultrasonic signal is associated with the microstructure and crystal structure of the metal sample, and the concept of "ultrasonic fingerprint" is introduced. The "ultrasonic fingerprint" of each metal sample is unique, and the sampling and retention of the "ultrasonic fingerprint" of a known standard sample is equivalent to putting an "anti-counterfeit label" on it. Three types of metal samples with similar composition and seven metal samples of the same composition in each type were sampled using the sector sweep of the ultrasonic phased array. The improved Manhattan distance is used as the fingerprint feature, and the Gaussian distribution principle and triple standard deviation method are combined to calculate the identification threshold of the standard samples, which is more scientific and reasonable compared with the previous threshold calculation method. The test results show that the proposed method can achieve accurate identification of all metal samples with similar composition or even those with the same composition.
Keywords: ultrasonic;metal samples;anti-counterfeit identification;improved Manhattan distance;threshold
2024, 50(5):138-144,185  收稿日期: 2022-04-01;收到修改稿日期: 2022-05-12
基金项目: 国家自然科学基金资助项目(12174241);装备预研共用技术项目(XXXXX040302)
作者简介: 王杰(1996-),男,江西遂川县人,硕士研究生,专业方向为超声检测。
参考文献
[1] 石新正, 孙亮, 马德军. 基于Vickers压痕的金属材料塑性参数压入测试方法[J]. 中国测试, 2018, 44(9): 141-147
SHI X Z, SUN L, MA D J. Metal material plasticity parameter indentation testing method based on Vickers indentation[J].  China Measurement & Test, 2018, 44(9): 141-147
[2] 易勇. ICP-OES法测定镍铜合金中的铝含量[J]. 四川冶金, 2021, 43(6): 57-60
YI Y. Determination of aluminum content in nickel copper alloys by ICP-OES method[J]. Sichuan Metallurgy, 2021, 43(6): 57-60
[3] 黄世杰, 刘永丰, 鲍惠君, 等. 便携式X-荧光仪与ICP-AES联同检测废塑料金属涂层含量[J]. 中国测试, 2014, 40(5): 55-57
HUANG S J, LIU Y F, BAO H J, et al. Portable X-ray fluorescence analyzer combined with ICP-AES for detecting the content of metal coatings on waste plastics[J]. China Measurement & Test, 2014, 40(5): 55-57
[4] MASON W, MCSKIMIN H. Attenuation and scattering of high frequency sound wavesin metals and glasses[J]. Journal of the Acoustical Society of America, 1947, 19(3): 464-473
[5] WEAVER R L. Diffusivity of ultrasound in polycrystals[J]. Journal of the Mechanics and Physics of Solids, 1990, 38(1): 55-86
[6] SHA G. Correlation of elastic wave attenuation and scattering with volumetric grainsize distribution for polycrystals of statistically equiaxed grains[J]. Wave Motion, 2018, 83: 102-110
[7] 贺西平, 田彦平, 张宏普. 超声无损评价金属材料晶粒尺寸的研究[J]. 声学技术, 2013, 32(6): 445-451
HE X P, TIAN Y P, ZHANG H P. Research on ultrasonic non destructive evaluation of grain size in metal materials[J]. Technical Acoustics, 2013, 32(6): 445-451
[8] 贺西平, 刘小荣, 张宏普, 等. 超声背向散射衰减系数谱的金属防伪辨识[J]. 陕西师范大学学报(自然科学版), 2014, 42(6): 40-44
HE X P, LIU X R, ZHANG H P, et al. Metal anti-counterfeiting identification of ultrasonic backscatter attenuation coefficient spectrum[J]. Journal of Shaanxi Normal University (Natural Science edition), 2014, 42(6): 40-44
[9] 崔东. 金属材料显微组织与声参量关系研究[D].西安: 陕西师范大学, 2016.
CUI D. Research on the relationship between microstructure and acoustic parameters of metal materials [D]. Xi'an: Shaanxi Normal University, 2016.
[10] 张超才, 韩军, 龙晋桓, 等. 基于超声相控阵的小径薄壁管座角焊缝检测CIVA仿真[J]. 中国测试, 2021, 47(7): 19-25
ZHANG C C, HAN J, LONG J H, et al. CIVA simulation of fillet weld inspection of small diameter and thin-walled pipe base based on ultrasonic phased array[J]. China Measurement & Test, 2021, 47(7): 19-25
[11] 张宏普, 贺西平, 贺升平, 等. 一种超声定点检测用探头固定装置[P]. 中国专利: CN201520540078.2, 2015-11-18.
ZHANG H P, HE X P, HE S P, et al.A probe fixing device for ultrasonic fixed-point detection [P].Chinese Patent: CN201520540078.2, 2015-11-18.
[12] SUN Y, LI S, WANG Y, et al. Fault diagnosis of rolling bearing based on empirical mode decomposition and improved Manhattan distance in symmetrized dot pattern image[J]. Mechanical Systems and Signal Processing, 2021, 159: 107817
[13] 纪宏伟. 关于中心极限定理的解读[J]. 江西电力职业技术学院学报, 2019, 32(3): 82-84
JI H W. Interpretation of the central limit theorem[J]. Journal of Jiangxi Vocational and Technical College of Electricity, 2019, 32(3): 82-84
[14] 黄二辉, 潘德炉, 李淑菁, 等. 水下剖面光谱原始数据异常值的判断方法[J]. 海洋学研究, 2006(1): 91-96
HUANG E H, PAN D L, LI S J, et al. A method for determining outliers in raw spectral data of underwater profiles[J]. Journal of Marine Sciences, 2006(1): 91-96
[15] 陈傲星, 武靖. 关于大数定律的简单注解[J]. 湖北第二师范学院学报, 2020, 37(2): 16-19
CHEN A X, WU J. A simple annotation on the law of large numbers[J]. Journal of Hubei University of Education, 2020, 37(2): 16-19