您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于高阶滑模算法的飞机架水平控制方法研究

基于高阶滑模算法的飞机架水平控制方法研究

446    2024-05-24

免费

全文售价

作者:范晓龙1, 闫鹏庆1, 赵箫宇1, 宋婉琪2

作者单位:1. 中国飞行试验研究院,陕西 西安 710089;
2. 西北工业大学机电学院,陕西 西安 710072


关键词:飞机架水平;自动控制;自动调平;滑模控制;电液控制


摘要:

为提高飞机架水平操作过程的自动化水平,该文针对运八飞机在飞行试验过程中所需的飞机架水平操作系统进行设计研究,提出一种基于高阶滑模算法的运八飞机架水平控制及实现方法。该方法基于三点调平机构,在对系统硬件进行设计的基础上,分别对系统支撑装置、驱动电机、电动泵以及千斤顶进行数学建模分析,并基于高阶滑模算法对控制系统以及滑模控制器进行设计。搭建试验平台进行验证,试验结果表明:飞机各支点位置误差在0.5 mm以内,实际运行测试结果与仿真结果误差较小,误差仅为1.9%。该系统能够实现预期目标,调平精度满足技术要求,可为飞机架水平操作提供一种新的发展方向。


Aircraft leveling control method based on high-order sliding mode algorithm
FAN Xiaolong1, YAN Pengqing1, ZHAO Xiaoyu1, SONG Wanqi2
1. Chinese Flight Test Establishment, Xi’an 710089, China;
2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Abstract: To address the lack of automation in aircraft leveling operations,this paper studies the leveling system for the gravity test of aircraft , and the control algorithm and the related realization method is proposed for the aircraft automatic leveling system. Based on the three-point leveling mechanism, on the basis of the hardware design of the system, the mathematical modeling analysis of the system support device, drive motor, electric pump and jack was carried out. The design is based on high order synovial algorithm system and sliding mode controller. The test results show that the support point position error is within 0.5 mm, and the error between the actual test results and the simulation results is only 1.9%. The system can achieve the expected goal, the leveling accuracy meets the technical requirements, and provides a new development direction for the aircraft frame level.
Keywords: aircraft leveling;automatic control;automatic leveling;sliding mode control;electro-hydraulic control
2024, 50(5):174-179  收稿日期: 2023-11-30;收到修改稿日期: 2024-01-06
基金项目:
作者简介: 范晓龙(1981-),男,辽宁法库县人,高级工程师,硕士,研究方向为飞行试验测试改装与平台改装总体、结构及系统设计,飞行试验专项试验系统设计与研制。
参考文献
[1] 陈惠蓉. 基于性能的飞机配载平衡研究[J]. 民航学报, 2023, 7(6): 81-84.
CHEN H R. Research on aircraft weight and balance based on performance[J]. Journal of Civil Aviation, 2023, 7(6): 81-84.
[2] 颜巍, 黄灵恩. 重心位置对不同布局飞机尾旋特性的影响[J]. 民用飞机设计与研究, 2018(4): 29-35.
YAN W, HUANG L E. Effect of C. G. location on spin characteristics of different layout aircraft[J]. Civil Aircraft Design & Research, 2018(4): 29-35.
[3] ZHAO X, YUAN Y, DONG Y, et al. Optimization approach to the aircraft weight and balance problem with the centre of gravity envelope constraints[J]. IET Intelligent Transport Systems, 2021, 15(10): 1269-1286.
[4] 贾恒信, 张志刚, 李明波, 等. 飞机重量及重心测量系统的应用及发展[J]. 衡器, 2015, 44(4): 5-9.
JIA H X, ZHANG Z G, LI M B, et al. Application and development of aircraft center of gravity measuring system[J]. Weighing Instrument, 2015, 44(4): 5-9.
[5] 付鹏, 王利光, 谭春林. 重量与重心测量装置及测量方法: CN109632062A[P], 2023-11-15.
[6] 唐震宇,张云. 多传感器数据融合的四轴飞行器姿态角解算[J]. 自动化与信息工程, 2023, 44(1): 33-38.
TANG Z Y, ZHANG Y.  Multi-sensor data fusion for attitude angle calculation of four axis aircraft[J]. Automation & Information Engineering, 2023, 44(1): 33-38.
[7] 李文超. 数字式静液压传动系统动力特性及其控制策略研究[D]. 吉林:吉林大学, 2023.
LI W C. Research on the power characteristics of digitalhydrostatic transmission system and its control strategy[D]. Jilin: Jilin University, 2023.
[8] 张贻哲, 李跃松, 李阁强, 等. 单杆液压缸电液位置伺服系统物理建模与分析[J]. 指挥控制与仿真, 2023, 45(6): 96-101.
ZHANG Y Z, LI Y S, LI G Q, et al. Physical modelling and analysis of electro-hydraulic position servo systems for single rod hydraulic cylinders[J]. Command Control & Simulation, 2023, 45(6): 96-101.
[9] 赵紫寅, 孔繁星, 孙皓章, 等. 光学芯轴测量台四点自动调平方法研究[J]. 化工自动化及仪表, 2023, 50(2): 238-244.
ZHAO Z Y, KONG F X, SUN H Z, et al. Research on four-point auto- eveling method for optics mandre measuring table[J]. Control and Instruments in Chemical Industry, 2023, 50(2): 238-244.
[10] 刘丽媛, 邢然, 李道平, 等. 新一代运载火箭12点调平控制策略设计及优化[J]. 导弹与航天运载技术, 2021(1): 99-104.
LIU L Y, XING R, LI D P, et al. Design and optimization of 12-piont leveling control strategy for the new generation carrier rocket[J]. Missiles and Space Vehicles, 2021(1): 99-104.
[11] 黄成成, 金海, 鲁文其. 基于Super-Twisting无位置滑膜观测器的永磁同步电机控制[J]. 电子科技, 2023, 36(11): 8-13.
HUANG C C, JIN H, LU W Q. Permanent magnet synchronous motor control based on super-twisting sliding film observer[J]. Electronic Science and Technology, 2023, 36(11): 8-13.
[12] 赵回, 王雪梅, 许哲, 等. 一种转台伺服系统干扰补偿控制方法研究[J]. 中国测试, 2019, 45(3): 139-145.
ZHAO H, WANG X M, XU Z, et al. Research on a method of turntable servo system disturbance compensated control[J], China Measurement & Test, 2019, 45(3): 139-145.
[13] ZHANG T, CHEN G, YAN G, et al. Research on the nonlinear characteristic of flow in the electro-hydraulic servo pump control system[J]. Processes, 2021, 9(5): 814.
[14] 于涛, 王益博, 杨昆, 等. 球杆系统基于二阶滑模的分级滑模控制[J]. 中国测试, 2019, 45(11): 114-119.
YU T, WANG Y B, YANG K, et al. Hierarchical sliding mode control of a ball and beam systembased on second order sliding mode[J]. China Measurement & Test, 2019, 45(11): 114-119.