您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>基于MEMS倾角传感器和薄膜压力传感器的人体步态监测装置

基于MEMS倾角传感器和薄膜压力传感器的人体步态监测装置

7606    2018-11-29

免费

全文售价

作者:崔建鹏, 曹恒, 朱钧, 江金林, 张雨

作者单位:华东理工大学机械与动力工程学院, 上海 200237


关键词:信息处理技术;步态监测装置;步态周期归一化;MEMS传感器


摘要:

为研究康复型下肢外骨骼的运动状态,基于微机电系统(microelectromechanical system,MEMS)倾角传感器和薄膜压力传感器建立人体运动状态监测装置。该装置按照功能划分为传感器模块、无线发送模块和数据处理模块,传感器模块利用倾角传感器和薄膜压力传感器感知肢体运动倾角和脚底支反力,无线收发模块通过ZigBee将数据发送至计算机,数据处理模块采用Labwindows/CVI软件实现步态周期归一化处理。通过该系统与某型步态图像识别系统同步进行多种步速的步态试验,得到不同步速下两装置膝关节运动倾角归一化数据对比曲线,其结果基本一致,试验表明本监测装置具有实用性。


Human gait monitoring system based on MEMS tilt sensors and thin film pressure sensors

CUI Jianpeng, CAO Heng, ZHU Jun, JIANG Jinlin, ZHANG Yu

School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract: In order to study the movement state of the rehabilitative lower limb exoskeleton, a monitoring device based on the microelectromechanical system tilt sensor and thin film pressure sensor was established. The device had its function divided into sensor module、wireless send module and data-processing module. The sensor module used the tilt sensors and the film pressure sensor to perceive the movement angle of the limb and the reacting force of the foot. The experimental data was send to computer with ZigBee. The data-processing module used the Labwindows/CVI to achieve the period normalization of the gait. The system synchronized with a certain gait recognition system carried out tests under a variety of gait speed, and the data comparison normalization curves of knee joint motion angle of the two systems was obtained. The results of the gait test data of the system were basically the same as that of a gait image recognition system. It is proved that the monitoring system is practicable.

Keywords: information processing technology;gait monitoring device;normalization of gait cycle;MEMS sensors

2018, 44(8): 70-75  收稿日期: 2018-03-11;收到修改稿日期: 2018-04-25

基金项目: 国家自然科学基金(91748110)

作者简介: 崔建鹏(1991-),男,河北保定市人,硕士,专业方向为智能传感测控技术

参考文献

[1] 韩亚丽. 下肢助力外骨骼关键技术研究[D]. 南京:东南大学, 2010.
[2] 周萌, 曹光磊, 张宽, 等. 便携式步态分析仪量化评价全膝关节置换病人的步态特征[J]. 中国矫形外科杂志, 2015, 23(7):615-619.
[3] 顾捷. 一种三维步态分析仪:CN 203483427 U[P]. 2014.
[4] 王帅杰, 李钊, 张华, 等. 一种基于连续波生物雷达的人体步态非接触检测系统[J]. 中国医疗设备, 2016, 31(12):26-30.
[5] 李声飞, 吴宝明. 基于无线传感器技术的人体步态跟踪系统研制[J]. 北京生物医学工程, 2010, 29(2):154-161.
[6] 曹玉珍, 刘晓婷, 程旸. 基于加速度的人体步态监测方法[J]. 中国医疗设备, 2009, 24(2):60-62.
[7] 韦启航, 卢世壁. 人体步态分析系统:足底压力测量系统的研制[J]. 中国生物医学工程学报, 2000, 19(1):32-40.
[8] 王劲松, 王令军, 王婷, 等. 不同步速下人体步态规律的测量与研究[J]. 传感器与微系统, 2008, 27(9):43-45.
[9] STRAUSSER K A, KAZEROONI H. The development and testing of a human machine interface for a mobile medical exoskeleton[C]//International Conference on Intelligent Robots and Systems. IEEE, 2011:4911-4916.
[10] STRAUSSER K A, SWIFT T A, ZOSS A B, et al. Mobile Exoskeleton for Spinal Cord Injury:Development and Testing[C]//ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, 2011:419-425.
[11] 潘大雷. 混联下肢外骨骼的步态规划与控制研究[D]. 上海:上海交通大学, 2015.
[12] WANG X C, RISTIĆ-DURRANT D, MATTHIAS S, et al. Gait assessment system based on novel gait variability measures[C]//International Conference on Rehabilitation Robotics, 2017.
[13] 朱一鸣. 基于心血管电网络模型的脉象信号仿真分析与识别研究[D]. 上海:华东理工大学, 2013.
[14] 王建新, 隋美丽. LabWindows/CVI虚拟仪器测试技术及工程应用[M]. 北京:化学工业出版社, 2011:386-422.