Vol.45 No.8 August, 2019

doi: 10.11857/j.issn.1674-5124.2018070059

纳米尺寸膜厚标准样片的椭偏分析

张晓东, 韩志国, 李锁印, 梁法国 (中国电子科技集团公司第十三研究所,河北石家庄 050051)

摘 要:针对膜厚标准样片的高精度测量问题,基于光谱型椭偏仪测量系统,提出对膜厚标准样片逐层分析的方法。 利用相应的匹配算法,对比硅上二氧化硅模厚标准样片的等效结构模型和四相结构模型,实现对薄膜样片的厚度表 征和椭偏分析。其次,通过对样片进行为期 12 周的测量考核,完成对薄膜样片表层分子吸附机理的分析。实验结果 表明:针对研制的标称值为 2~1 000 nm 硅上二氧化硅膜厚标准样片,中间层的厚度存在先递减后递增的趋势。其 中,在标称值为 50~500 nm 范围内,等效结构模型与四相结构模型测量结果的绝对误差在±0.2 nm 以内,因此,可以 采用等效结构模型的方法开展仪器的校准工作。另外,提出通过加热实现对标准样片解吸附的方案,有效解决超薄 膜样片的储存问题。

关键词:光谱型椭偏仪;等效结构模型;四相结构模型;表层分子吸附
 中图分类号:O436.3
 文献标志码:A
 文章编号:1674-5124(2019)08-0014-05

The ellipsometry analysis of the standard sample on nano-scale film thickness

ZHANG Xiaodong, HAN Zhiguo, LI Suoyin, LIANG Faguo (The 13th Institute of CETC, Shijiazhuang 050051, China)

Abstract: Aiming at the high-precision measurement of film thickness standard samples, a layer-by-layer analysis method for film thickness standard samples was proposed, based on the spectral ellipsometer measurement system. By using the corresponding matching algorithm, the four-phase structure model and equivalent structure model of the standard sample of SiO₂ film thickness were compared to realize the thickness characterization and ellipsometry of the film samples. Secondly, through the 12-week measurement and evaluation of the samples, the analysis of the molecular adsorption mechanism of the film samples was completed. The experimental results show that for the developed SiO₂/Si standard sample of 2 nm-1 000 nm, the thickness of the middle layer tends to decrease first and then increase. Among them, the absolute error between the equivalent structural model and the four-phase structural model is within ± 0.2 nm for the standard sample from 50 nm to 500 nm. Therefore, the calibration of the instrument can be carried out using the equivalent structural model. In addition, a solution for desorbing standard samples.

Keywords: spectral ellipsometer; equivalent structure model; four-phase structure model; surface molecular adsorption

收稿日期: 2018-07-14; 收到修改稿日期: 2018-08-25

作者简介:张晓东(1992-),男,山东菏泽市人,硕士,主要从事微纳尺寸标准样片的研制与定标研究。

0 引 言

随着微电子、半导体工艺的发展,薄膜厚度作为器件的重要参数,将直接影响到器件的性能。因此,保证膜厚量值的准确性十分重要。通常,纳米尺寸膜厚标准样片是校准椭偏仪等膜厚类测量仪器的标准样片,其主要分为硅上二氧化硅(SiO₂/Si)和 硅上氮化硅(Si₃N₄/Si)膜厚标准样片¹¹。通过研制纳 米尺寸膜厚标准样片,可以实现膜厚类测量仪器的 溯源,提升半导体器件工艺的稳定性、重复性和可 靠性。

国内外学者采用四相结构模型的理论来测量纳 米尺寸膜厚标准样片^[2]。但在微纳尺寸计量领域, 通常采用等效结构模型的理论对样片进行定标。因 此,本文通过比较两种结构模型下的测量结果,找 出等效模型的有效范围。其次,利用光谱型椭偏仪 对 SiO₂/Si 膜厚标准样片进行逐层分析,完成对中间 层和表层分子吸附机理的研究,不仅提高样片的定 标准确度,并对指导膜厚标准样片的制作工艺提供 了技术支撑。

1 椭偏仪系统测量原理

光谱型椭偏仪的基本原理是:利用偏振光在薄膜上下表面的反射原理,并通过菲涅尔公式得到薄膜参数与偏振态的关系,进而计算出薄膜的折射率和厚度^[3]。其中,椭圆偏振法光路如图1所示,入射光可以分解为P平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S平面偏振分量*E*₁和S

$$\overline{R_{\rm p}} = \frac{E_{\rm rp}}{E_{\rm ip}} = f_{\rm P}(n_1, k_1, d_1)$$

$$\overline{R_{\rm s}} = \frac{E_{\rm rs}}{E_{\rm is}} = f_{\rm S}(n_1, k_1, d_1)$$
(1)

用薄膜的椭偏函数ρ表示薄膜反射而形成椭圆

偏振光的特性为

$$\rho = \tan \Psi e^{j\Delta} = \frac{R_{\rm p}}{\overline{R_{\rm s}}} = \frac{f_{\rm P}(n_1, k_1, d_1)}{f_{\rm S}(n_1, k_1, d_1)}$$
(2)

其中, $\tan \Psi = R_p/R_s$, 代表反射光的 P 平面偏振分量 和 S 平面偏振分量的振幅系数之比, Ψ 代表偏振角, $\Delta = \Psi_P - \Psi_S$ 表示两个偏振量的相位差。折射率 n_i 与 膜厚 $d_i \neq \rho$ 的变量, 因此, 通过 Ψ 和 Δ 可以拟合求解 薄膜的折射率与厚度^[4]。

2 SiO₂/Si 膜厚标准样片的椭偏分析

2.1 椭偏测量系统

本文测量膜厚样片所用的仪器是 J.A.Woollam 光谱型椭偏仪,其包括光源系统、起偏器、样品台、 检测系统等,如图 2 所示。光源系统发出的自然光 经过起偏器变为线偏振光。然后,在薄膜表面反射 后,以椭圆偏振光的形式入射到检偏器进而变为线 偏振光^[5]。最后,探测器将光信号转化为电信号,输 送到计算机中。该系统具有非接触式、高精度的优 点,适用于对膜厚标准样片进行椭偏分析。

图 2 光谱型椭偏仪

待测样片是标称值为 2~1 000 nm 的 SiO₂/Si 膜厚标准样片,该套样片采用热氧化工艺制备,通 过控制氧化剂分压、氧化温度以及氧化时间等参 数,来保证薄膜的均匀性¹⁰。SiO₂/Si 膜厚标准系列 样片的颜色不同表示其厚度不同如图 3 所示。

图 3 2~1 000 nm SiO₂/Si 膜厚标准样片

如图 4 所示, 椭偏分析的过程包括:1)测量过程, 完成膜厚样片的数据采集;2)建模过程, 建立准确的测量模型;3)数据拟合, 采用均方根误差最小法, 保证拟合的效果;4)输出结果, 获取薄膜样片的膜厚和光学常数。

2.2 等效结构模型分析

根据膜厚标准样片的制作工艺,建立四相结构 模型,如图 5 所示。其中,中间层是热氧化工艺不 可避免的产物,主要成分是硅和氧的不同配比化合 物。与二氧化硅膜层相比,中间层具有不同的光学 性质。此外, SiO₂ 膜层上表面存在粗糙度层,该层 可以等效为 SiO₂-Void 混合层,通过 EMA 有效介质 方程^[7] 计算为

$$f_1 \frac{\varepsilon_1 - \varepsilon}{\varepsilon_1 + 2\varepsilon} + f_2 \frac{\varepsilon_2 - \varepsilon}{\varepsilon_2 + 2\varepsilon} = 0$$
(3)

式中:ε——等效介电常量;

 ε_1 、 ε_2 ——SiO₂、Void 的介电常量;

 f_1 、 f_2 ——混合层中 SiO₂、Void 的体积分数。

项目组提出采用等效结构模型来测量 SiO₂/Si 膜厚标准样片,即将硅衬底上的所有结构等效为一 层二氧化硅结构,以便开展校准测量仪器和比对工 作^[8],如图 6 所示。依据四相结构模型的概念,膜厚 标准样片的厚度为中间层、SiO₂ 层和 SiO₂-Void 混 合层叠加的厚度。相比之下,依据等效结构模型的 概念,膜厚标准样片的厚度为等效结构层的厚度。 在两种结构模型下,结合相应算法和数学模型,对

图 5 四相结构模型

研制的两组 SiO₂/Si 膜厚标准样片进行测量^[9]。其中,由公式(1)和(2)可知,Ψ代表偏振角,Δ表示两个偏振量的相位差,其分别的拟合效果如图 7 图 8 所示。

图 8 100 nm 膜厚样片等效结构模型的拟合效果

根据图 7 和图 8 可知,利用光谱型椭偏仪,在 两种结构模型下,拟合效果都十分理想。而实际的 测量结果如表 1 所示。此外,标准样片厚度的差值 与标称值的关系如图 9 所示。

根据表 1 和图 9 可知,针对研制的两套标称值 为 2~1 000 nm SiO₂/Si 膜厚标准样片,厚度差值的 变化趋势相同。其中,膜厚标称值在 50~500 nm 范 围内,两种结构模型的测量差值在±0.2 nm 以内。 根据美国 VLSI 公司给出的样片测量不确定度可 知,1 000 nm 以内的膜厚样片的不确定度在 0.4 nm 以内,因此,可以采用等效结构模型的方法开展仪 器的校准工作。相比之下,针对研制的标称值为 2~50 nm 和 500~1 000 nm 的 SiO₂/Si 膜厚标准样

表1 样片在两种结构模型下的测量结果

						nm			
膜厚标称值/nm -		研制样片1		研制样片2					
	四相结构模型	等效结构模型	差值	四相结构模型	等效结构模型	差值			
2	1.47	1.90	-0.43	1.96	2.37	-0.41			
5	5.34	5.70	-0.36	5.35	5.70	-0.35			
10	11.30	11.64	-0.34	11.35	11.64	-0.29			
20	19.80	20.07	-0.27	19.8	20.07	-0.27			
50	50.37	50.35	0.02	50.37	50.35	0.02			
100	100.32	100.24	0.08	100.31	100.23	0.08			
200	199.61	199.53	0.08	207.1	207.01	0.09			
500	539.88	539.78	0.10	504.89	504.72	0.17			
1 000	1 045.23	1 045.07	0.16	1 001.67	1 001.4	0.27			

片,则不适合采用等效结构模型来校准膜厚类测量 仪器。

2.3 中间层分析

针对 SiO₂/Si 膜厚标准样片,中间层是一个不可 忽略的膜层¹⁰⁰。分析中间层对薄膜厚度的影响对指 导半导体工艺十分关键。因此,针对研制的 2~ 1 000 nm SiO₂/Si 膜厚标准样片,借鉴四相结构模型 的理论,对样片的中间层进行测量¹¹¹。其中,椭偏分 析的结果如图 10 所示。

根据图 10 可知,针对研制的标称值为 2~ 1 000 nm 的膜厚标准样片,中间层的厚度存在先递 减后递增的趋势。此外,针对研制的超薄膜厚标准 样片,中间层所占的比例很大。因此,改进工艺,降 低中间层厚度对于关键尺寸膜厚标准样片的制作十 分必要。

2.4 表层分子吸附

由于膜厚标准样片存在分子吸附现象112,样片

的厚度值会随着时间的推移发生变化。对于超薄膜 厚标准样片而言,表层分子吸附现象对样片厚度的 影响更大。因此,针对标称值为 2 nm 的 SiO₂/Si 膜 厚标准样片,利用 J.A.Woollam 光谱型椭偏仪,进行 为期 12 周的样片测量考核。其中,实验样片为同 批次生产的 2 片 2 nm 的膜厚标准样片,两个样片 同时存放在 20 ℃ 环境下。针对样片 1,每周进行 150 ℃ 的高温加热,然后测量其厚度值。针对样片 2,每 4 周进行 150 ℃ 的高温加热,然后记录其厚度 值,如表 2 所示。因此,可以通过定量分析的方式, 来研究表层分子吸附现象对 SiO₂/Si 膜厚标准样片 的影响。

根据图 11 可知,样片 1 在 12 周内的厚度值保 持在 1.9~2 nm 之间,误差在 0.1 nm 之间。样片 2 在每 4 周内,薄膜厚度会不断增加,通过 150 ℃ 的高温加热,厚度值会降到 1.9~2 nm 之间。因此, 通过周期性考核试验可知,加热可以实现膜厚标准

表 2	标准样片的厚度变化值
1X 4	

衣 2 标准件 / 的 序											nm		
类别	1周	2周	3周	4周	5周	6周	7周	8周	9周	10周	11周	12周	13周
样片1	1.91	1.91	1.91	1.97	1.98	1.98	1.91	1.94	1.92	1.91	1.91	1.99	1.94
样片2	1.94	2.16	2.14	2.17	1.96	2.18	2.16	2.18	1.95	2.2	2.18	2.17	1.96

3 结束语

作为校准膜厚类仪器的标准片,纳米尺寸膜厚标准样片的高精度测量问题是亟待解决的问题。首先,本文分析了光谱型椭偏仪测量系统的测量原理。其次,通过定量分析膜厚标准样片的两种结构模型和中间层,解决了膜厚标准样片等效结构模型适用范围的问题。最后,针对标称值为2nm的SiO₂/Si 膜厚标准样片存在表层分子吸附现象,进行为期12 周的样片考核,提出了通过加热实现膜厚标准样片解吸附的方案。

接下来要开展的工作有:1)膜厚标准样片测量 模型的优化;2)分析超薄膜厚标准样片中间层的主 要成分;3)研究表层分子吸附现象的替代解决方案 等。这些问题的解决对膜厚标准样片的研制与定标 工作提供了重要技术支撑,有助于提升微电子生产 工艺的重复性、稳定性和可靠性,促进相关高新技 术领域的技术转化和产业化发展。

参考文献

- [1] 赵琳,李锁印,韩志国,等. 硅上氮化硅膜厚样片的制备 [J]. 计测技术, 2016(s1): 309-310.
- [2] 徐均琪, 冯小利. 多层薄膜光学常数的椭偏法研究 [J]. 光电 工程, 2009, 36(2): 29-33.
- [3] 余平,张晋敏. 椭偏仪的原理和应用 [J]. 合肥学院学报 (综合版), 2007, 17(1): 87-90.
- [4] HIROYUKI FUJIWARA. Spectroscopic ellipsometry: principles and applications[M]. Tokyo: Maruzen Co. Ltd, 2007: 178-182.
- [5] 韩志国,李锁印,赵琳,等.一种光谱型椭偏仪的校准方法 [J].中国测试,2017,43(12):1-6.
- [6] 王多书,李佑路,李凯朋,等. 红外光学薄膜材料折射率温度 特性的研究方法 [J]. 红外与激光工程, 2018, 47(4): 111-115.
- [7] 林书玉, 吴峰, 陈长清, 等. 使用椭偏光谱研究氮化铝薄膜在 不同温度下的光学性质 [J]. 红外与毫米波学报, 2017, 36(3): 276-279.
- [8] 刘华松,杨霄,刘丹丹,等. SiO₂ 薄膜光学常数物理模型 [J].红外与激光工程, 2017, 46(9): 286-291.
- [9] 周毅,吴国松,代伟,等. 椭偏与光度法联用精确测定吸收薄膜的光学常数与厚度[J]. 物理学报, 2010, 59(4): 2356-2363.
- [10] VENKATACHALAM S, SOUNDARARAJAN D, PERANANTHAM P, et al. Spectroscopic ellipsometry (SE) studies on vacuum-evaporated ZnSe thin films[J]. Materials Characterization, 2007, 58(8): 715-720.
- [11] 吴慧利, 唐义, 白延柱, 等. 紫外薄膜光学常数的多层模型椭 偏测量 [J]. 光电工程, 2015, 42(9): 89-94.
- [12] YU G, TORTONESE M. Metrology standards for semiconductor manufacturing[C]//International Conference on Solid-State and Integrated Circuits Technology, 2004. Proceedings. IEEE, 2004: 588-593.

(编辑:徐柳)