一种固定视点的机器人手眼关系标定方法
作者:谢小鹏, 彭泽林 作者单位:华南理工大学机械与汽车工程学院, 广东 广州 510640 发布时间:2018-07-02 09:30:11 点击数:122

PDF下载[20] HTML[0]

关键词:机器人;固定视点;手眼关系标定;双目视觉
摘要:

针对固定视点的机器人手眼关系标定问题,根据固定视点机器人及视觉系统结构特点,提出一种固定视点机器人手眼关系求解方法。该方法在双目视觉测量的基础上,首先控制机械臂末端进行3次平移运动,通过末端平移量及双目视觉测量值标定手眼关系中的旋转矩阵;接下来控制机械臂末端进行1次旋转运动,通过末端旋转量及双目视觉测量值标定手眼关系中的平移矩阵。经视觉关联机器人定位准确度试验验证,使用该方法进行手眼关系标定后,定位准确度空间距离偏差均值为0.53 mm,标准差为0.19 mm。该方法无需复杂求解,即可实现较高准确度,具有一定应用价值。

A hand-eye calibration method based on robot with stationary viewpoint

XIE Xiaopeng, PENG Zelin

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China

Abstract: Aiming at the problem of hand-eye calibration of robot with stationary viewpoint, a new hand-eye calibration method is proposed according to the characteristics of robot with stationary viewpoint and visual system. Based on the binocular vision measurement, the end of the manipulator is controlled to achieve three translational movements, and the rotation matrix is calibrated by the translation amount of the end and the binocular visual measurement value. Then the end of the manipulator is controlled to perform one rotation movement, and the translation matrix in hand-eye relationship is calibrated by the rotation amount of end and the binocular visual measurement value. The visual-robot positioning accuracy test shows that, after calibrating the hand-eye relationship, the average spatial distance deviation of positioning accuracy is 0.53mm and the standard deviation is 0.19mm. This method can achieve high accuracy without solving complex solutions and the calibration process is simple, which means the method has certain application value.

Keywords: robot;stationary viewpoint;hand-eye calibration;binocular vision

2018, 44(6): 1-5,16  收稿日期: 2018-01-02;收到修改稿日期: 2018-02-11

基金项目: 

作者简介: 谢小鹏(1961-),男,江西樟树市人,教授,博士,主要研究方向为摩擦学、机器人技术。

参考文献

[1] 徐昌源, 全燕鸣, 郭清达. 改进最小二乘法双目视觉位姿测量技术研究与测试[J]. 中国测试, 2016, 42(9):27-30.
[2] 杨守瑞, 尹仕斌, 任永杰, 等. 机器人柔性视觉测量系统标定方法的改进[J]. 光学精密工程, 2014, 22(12):3239-3246.
[3] 沈程慧, 白瑞林, 李新. 视觉引导的装配机器人平面定位补偿方法[J]. 激光技术, 2017,41(1):79-84.
[4] VINCENTE P, JAMONE L, BERNARDINO A. Towards markerless visual servoing of grasping tasks for humanoid robots[C]//Robotics and Automation (ICRA), 2017 IEEE International Conference on IEEE, 2017:3811-3816.
[5] LIN C C, GONZALEZ P, CHENG M Y, et al. Vision based object grasping of industrial manipulator[C]//Advanced Robotics and Intelligent Systems (ARIS), 2016 International Conference on IEEE, 2016:1-5.
[6] WU K, WU L, REN H. An image based targeting method to guide a tentacle-like curvilinear concentric tube robot[C]//Robotics and Biomimetics (ROBIO), 2014 IEEE International Conference on IEEE, 2014:386-391.
[7] TSAI R Y, LENZ R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3):345-358.
[8] SHIU Y C, AHMAD S. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB[J]. IEEE Transactions on Robotics and Automation, 1989, 5(1):16-29.
[9] DE MA S. A self-calibration technique for active vision systems[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1):114-120.
[10] 张召瑞, 张旭, 郑泽龙, 等. 融合旋转平移信息的机器人手眼标定方法[J]. 仪器仪表学报, 2015, 36(11):2443-2450.
[11] 王金桥, 段发阶, 汪润. 精确标定关节臂视觉检测系统手眼关系[J]. 计算机工程与应用, 2015(21):225-22.
[12] 吴晗, 李巍, 董明利. 基于RANSAC的便携式激光扫描测量臂手眼标定方法[J]. 计算机工程与应用, 2017, 23:046.
[13] 全燕鸣, 黎淑梅, 麦青群. 基于双目视觉的工件尺寸在机三维测量[J]. 光学精密工程, 2013, 21(4):1054-1061.

内容:
昵称:
验证码:    点击刷新
全部评论:(0)
年份:
标题:
作者:
关键词:
内容: