作者:石凯凯, 蔡力勋, 黄学伟, 姚迪
作者单位:西南交通大学力学与工程学院, 四川 成都 610031
关键词:裂纹扩展; 低周疲劳; Paris律; 有限元
摘要:
结合TA12、TC4钛合金和Cr2Ni2MoV钢的Paris律实验结果,对基于材料的低周疲劳临界损伤获取材料疲劳裂纹扩展Paris律的有限元模拟方法(称为LFF方法) 进行了有效性验证,并开展了拓展应用.实验结果与模拟结果比较表明,LFF方法用于模拟材料Paris律有良好准确度.应用LFF方法获得了Cr2Ni2MoV钢、N18合金在多种高温下的Paris模型参数,研究了疲劳裂纹扩展速率的温度效应.
Simulation method to obtain Paris law of metallic materials with I-style crack and its applications
SHI Kai-kai, CAI Li-xun, HUANG Xue-wei, YAO Di
School of Mechanic and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract: By using of experimental results of low cycle fatigue and fatigue crack growth rate for titanium alloys TA12, TC4 and Cr2Ni2MoV steel, the validity of LFF method for predicting Paris laws of materials based on low cycle fatigue critical damage was verified in this paper. Then LFF method was applied to investigate the temperature effect on fatigue crack growth properties for Cr2Ni2MoV steel and N18 alloy by using the experimental results of low cycle fatigue at different temperatures. The results show that, LFF method can represent material Paris law with high precision. On application of LFF method, the parameters of Paris law for Cr2Ni2MoV steel and N18 alloy at various temperatures were obtained, and the temperature effects were also discussed in detail.
Keywords: crack propagation; low cycle fatigue; Paris law; finite element method
2011, 37(5): 9-13 收稿日期: 2010-8-18;收到修改稿日期: 2010-11-5
基金项目: 国家自然科学基金(11072205)
作者简介: 石凯凯(1987-), 男, 四川成都市人, 硕士研究生, 专业方向为固体力学.
参考文献
[1] Huang X P, Moan T, Cui W C. An engineering model of fatigue crack growth under variable amplitude loading [J]. International Journal of Fatigue, 2008(30): 2-10.
[2] Zhao T W, Zhang J X, Jiang Y Y. A study of fatigue crack growth of 7075-T651 aluminum alloy [J]. International Journal of Fatigue, 2008(30): 1169-1180.
[3] Kalnaus S, Fan F, Vasudevan A K, et al. An experimental investigation on fatigue crack growth of AL6XN stainless steel[J]. Engineering Fracture Mechanics, 2008(75): 2002-2019.
[4] Schollmann M, Fulland M, Richard H A. Development of a new software for adaptive crack growth simulations in 3D structures[J]. Engineering Fracture Mechanics, 2003(70): 249-268.
[5] Furukawa C H, Bucalem M L, Mazella I J G. On the finite element modeling of fatigue crack growth in pressurized cylindrical shells[J]. International Journal of Fatigue, 2009(31): 629-635.
[6] 蔡力勋, 包陈, 金蕾.金属材料断裂力学柔度测试技术的问题与发展[J].中国测试, 2009, 35(1): 9-18.
[7] Fan F F, Kalnaus S, Jiang Y Y. Modeling of fatigue crack growth of stainless steel 304L[J]. Mechanics of Materials, 2008(40): 961-973.
[8] 《工程材料实用手册》编辑委员会. 工程材料实用手册第4卷[M]. 北京: 中国标准出版社, 2006: 59-131.
[9] 黄学伟. 新结构材料力学行为的获取方法[D]. 成都: 西南交通大学, 2010: 44-48.
[10] 姜凤华, 田常录. 疲劳裂纹扩展的数值模拟[J]. 内蒙古工业大学学报, 2004, 23(3): 161-166.
[11] GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法[S].北京: 中国标准出版社, 2000.
[12] 连姗姗, 谭军, 冯可芹, 等. N18锆合金的低周疲劳行为[J]. 原子能科学技术, 2009, 43(12): 1118-1122.



