您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>固定污染源温室气体排放量直接监测方法综述

固定污染源温室气体排放量直接监测方法综述

1348    2023-01-05

免费

全文售价

作者:李海洋, 葛志松, 宋进

作者单位:上海市计量测试技术研究院,上海 201203


关键词:温室气体排放监测;直接监测法;流量测量;气体浓度测量;量值溯源


摘要:

针对温室气体排放量核查中的固定污染源温室气体排放量测量问题进行介绍。着重阐述应用直接监测法进行固定污染源温室气体排放测量的问题。介绍直接监测法中流量与气体浓度的测量方法与测量仪器、测量仪器的量值溯源方法及测量结果不确定度评价方法等内容。直接监测法相比传统的排放因子法和碳平衡法,具有先天的理论优势,可以在线连续监测,而不受排放因子、碳平衡燃烧氧化率等参数人为选用而引进的系统性误差。在此基础上展望直接监测法应进一步提高流量与浓度的测量准确度水平,并在统一浓度测量仪器量值溯源技术法规等方向进一步加深研究,今后直接监测法有望成为固定污染源温室气体排放测量的主流测量方法。


Review on the direct monitoring method of greenhouse gas emissions from stationary pollution sources
LI Haiyang, GE Zhisong, SONG Jin
Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
Abstract: This paper introduces the measurement of greenhouse gas emissions from stationary pollution sources in the verification of greenhouse gas emissions,of which mainly focuses on the application of direct monitoring method. The content includes the measurement methods and instruments of flow and gas concentration, traceability method of the measurement instrument and the uncertainty evaluation method of the measurement results. Compared with the traditional emission factor method and carbon balance method, the direct monitoring method has inherent theoretical advantages for no systematic error introduced by the artificial selection of emission factor, carbon balance combustion oxidation rate and other parameters and it can realize on-site real-time monitoring. It is expected that the direct monitoring method should further improve the measurement accuracy of flow and gas concentration, and further deepen the research in the direction of unifying the technical regulations for the traceability of concentration measurement instruments. In the future, the direct monitoring method is hopeful to become the mainstream measurement method for the measurement of greenhouse gas emissions from stationary pollution sources.
Keywords: greenhouse gas emissions monitor;direct monitoring method;flow measurement;gas concentration measurement;quantity traceability
2022, 48(10):181-188  收稿日期: 2022-04-27;收到修改稿日期: 2022-07-11
基金项目: 上海市2022年度“科技创新行动计划”项目(22dz1208800);上海市市场监督管理局科技项目(2021-11,2022-28)
作者简介: 李海洋(1987-),男,黑龙江哈尔滨市人,工程师,硕士,从事流量计量方法与流量标准装置的研究
参考文献
[1] Intergovernmental Panel on Climate Change. 2006 IPCC guidelines for national greenhouse gas inventories [R]. Tokyo: IGES, 2006.
[2] PACHAURI R K, REISINGER A. IPCC fourth assessment report[R]. Geneva: IPCC, 2007.
[3] 孙建卫, 赵荣钦, 黄贤金, 等. 1995-2005年中国碳排放核算及其因素分解研究[J]. 自然资源学报, 2010, 25(8): 1284-1295
[4] 国家发展改革委办公厅. 中国发电企业温室气体排放核算方法与报告指南 [R/OL]. (2013-11-01). https://www.ndrc.gov.cn/xxgk/zcfb/tz/201311/W020190905508183676844.pdf.
[5] 国家发展改革委办公厅. 中国水泥生产企业温室气体排放核算方法与报告指南 [R/OL]. (2013-11-01). https://www.ndrc.gov.cn/xxgk/zcfb/tz/201311/W020190905508186941483.pdf.
[6] BRYANT R, BUNDY M, ZONG R. Evaluating measurements of carbon dioxide emissions using a precision source—A natural gas burner[J]. Journal of the Air & Waste Management Association, 2015, 65(7): 863-70
[7] 朱德臣. 元素碳含量检测在燃煤发电企业温室气体排放核算中的应用[J]. 发电技术, 2018, 39(4): 363-366
[8] 吴晓蔚, 朱法华, 杨金田, 等. 火力发电行业温室气体 排放因子测算[J]. 环境科学研究, 2010(2): 170-176
[9] US Environmental Protection Agency. Part 75: continuous emissions monitoring requirements [Z/OL]. (2012-06-12).https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-75.
[10] Official Journal of the European Union. Commission Regulation (EU) No 600/2012 of 21 June 2012 on the verification of greenhouse gas emission reports and tonne-kilometre reports and the accreditation of verifiers pursuant to Directive 2003/87/EC of the European Parliament and of the Council Text with EEA relevance[Z/OL]. (2012-06-21). http://data.europa.eu/eli/reg/2012/600/oj.
[11] MAJANNE Y, KORPELA T, UOTILA T. EU emission trading related CO2 monitoring in power plants[J]. IFAC Proceedings Volumes, 2014, 47(3): 1361-1366
[12] 唐小亮, 何川, 刘晴, 等. 排放因子法高估燃气电厂的碳排放量——基于高邮某电厂的观测结果[J]. 电力科技与环保, 2020, 36(3): 17-20
[13] 张海滨, 胡永飞, 张景奇, 等. 二氧化碳排放量化方法探讨[J]. 中外能源, 2013, 18(3): 96-101
[14] ISO. Stationary source emissions-Measurement of velocity and volume flowrate of gas streams in ducts: ISO 10780: 1994 [S/OL]. (1994-11).https://www.iso.org/standard/18855.html.
[15] ISO. Stationary source emissions-Determination of mass concentrations of particulate matter (dust) at low concentrations-Manual gravimetric method: ISO 12141: 2002 [S/OL]. (2002-11). https://www.iso.org/standard/21011.html.
[16] 环境保护部. 固定污染源烟气排放连续检测技术规范: HJ 75—2017 [S]. 北京, 中国环境出版社 , 2017.12.
[17] US Environmental Protection Agency. EPA method 1, sample and velocity traverses for stationary sources[S/OL]. (1971-12-23). https://www.ecfr.gov/current/title-40/part-60.
[18] 环境保护部. 固定污染源排气中颗粒物测定与气态污染物采样方法: GB/T 16157—1996 [S]. 北京: 中国标准出版社, 1996.
[19] GEORGIOU D P, MILIDONIS K F. Fabrication and calibration of a sub-miniature 5-hole probe with embedded pressure sensors for use in extremely confined and complex flow areas in turbomachinery research facilities[J]. Flow Measurement and Instrumentation, 2014, 39: 54-63
[20] U. S. Environmental Protection Agency. EPA method 2F, determination of stack gas velocity and volumetric flow rate with three-dimensional probes[S/OL]. (1971-12-23). https://www.ecfr.gov/current/title-40/part-60.
[21] 李海洋, 张亮, 刘幸, 等. 固定排放源烟气流量在线监测技术的研究[J]. 上海计量测试, 2018, 45(5): 6-11
[22] 苏轼鹏, 翟玉婷, 金良安. 基于光流法的气流场测量研究[J]. 中国测试, 2020, 46(4): 6-11
[23] 邓千峰. 基于皮托管的烟道气体流量测量及量值溯源技术研究[D]. 保定:河北大学2020.06.
[24] 鲁岸立, 刘建国, 桂华侨, 等. 激光自混合测量矩形管道流速分布及流量[J]. 量子电子学报, 2016, 33(1): 75-80
[25] 冯真祯. 燃煤电厂矩形烟道烟气流速确定方法研究[D]. 南京: 南京信息工程大学, 2011.
[26] 温玉璞, 邵志清, 徐晓斌, 等. 青海瓦里关大气二氧化碳本底 浓度变化规律的观测研究[J]. 中国环境科学, 1993, 13(6): 420-424
[27] 温玉璞, 徐晓斌, 邵志清, 等. 用非色散红外气体分析仪进行 大气 CO2 本底浓度的测量[J]. 应用气象学报, 1993, 4(4): 476-480
[28] 高松. 夏季上海城区大气中二氧化碳浓度特征及相关因素分析[J]. 中国环境监测, 2011, 27(2): 70-75
[29] CARLSON R C, HAYDEN A F, TELFAIR W B. Remote observations of effluents from small building smoke stacks using FTIR spectroscopy[J]. Applied optics, 1988, 27(23): 4952-4959
[30] 路兴杰, 朱永宏, 闫继伟, 等. 红外光谱法测定工业烟气中二氧化碳浓度的测量系统构建与测量不确定度分析评定[J]. 工业计量, 2017, 27(6): 48-52
[31] 倪志波, 董凤忠, 杨阳, 庞涛, 吴边, 张志荣, 曾宗泳. 烟气流速及颗粒物浓度的光学测量方法研究[J]. 中国激光, 2014, 41(1): 162-169
[32] 谭超. 燃煤电厂碳排放监测方法研究[D]. 广州: 华南理工大学, 2017.
[33] 马路遥, 林 俊, 张 亮等. 温室气体浓度监测的光腔衰荡光谱研究进展[J]. 计量学报, 2022, 43(2): 274-280
[34] POLYANSKY O L, BIELSKA K, GHYSELS M, et al. Highaccuracy CO2 line intensities determined from theory and experiment[J]. Physical review letters, 2015, 114(24): 243001
[35] 杨光俊, 丁力, 郭照冰. 基于CFD方法的燃煤电厂烟气排放数值模拟[J]. 环境科学研究, 2017, 30(12): 1934-1943
[36] 王鹏, 穆军, 雷镇嘉. CFD对S型皮托管流量测量的仿真研究[J]. 中国测试, 2020, 46(9): 119-124
[37] 钱丛昊. 燃煤电厂排放烟气流速与气体污染物排放量测量方法的研究[D]. 南京: 东南大学, 2019.
[38] LI H, CHEN C, LIU B, et al. Flow quality analysis of contraction section and test section of low-speed wind tunnel based on CFD numerical simulation[C]. Journal of Physics: Conference Series. London: IOP Publishing, 2019, 1176(5): 052064.
[39] LI H, ZHANG L, YAO X, et al. The application of numerical calculation method in determining the coefficient of S-type Pitot tube[C]. London: Journal of Physics: Conference Series. IOP Publishing, 2019, 1300(1): 012117.
[40] 邓千封, 张亮, 方立德, 王池, 刘洋. 烟道流量计量标准装置[J]. 计量学报, 2020, 41(5): 567-572
[41] 邹冰妍. 烟道内二氧化碳浓度的激光测量方法研究[D]. 镇江:江苏大学, 2018.
[42] 胡曼青, 刘小河, 张伟. 三维超声波风速测量仪主控电路系统设计与实现[J]. 中国测试, 2020, 46(3): 97-102