您好,欢迎来到中国测试科技资讯平台!

首页> 数字期刊群 >本期导读>用于核酸提取样本容积最优化的等频率运动控制

用于核酸提取样本容积最优化的等频率运动控制

337    2024-01-15

免费

全文售价

作者:蒋新1, 姚佳2,3, 李东书2, 王天一3, 李金泽2, 李莹雪2, 周连群1,2

作者单位:1. 徐州医科大学, 江苏 徐州 221000;
2. 中国科学院苏州生物医学工程技术研究所 中国科学院生物医学检验技术重点实验室, 江苏 苏州 215163;
3. 苏州国科芯感医疗科技有限公司, 江苏 苏州 215163


关键词:步进电机;核酸提取;加减速控制;Sigmoid函数;定位精度


摘要:

为实现核酸提取振荡运动下样本容积最优化,将等频率运动控制算法应用于核酸提取过程中,通过提高核酸提取运动过程的平稳性,使振荡运动下核酸样本容积得到有效提升。基于搭建的STM32高精度控制平台,通过等频率离散化的方式控制步进电机使用Sigmoid曲线实现加减速过程,实现步进电机的平滑、精确控制。提出的等频率离散加减速运动控制算法可解决变速过程中速度变化不平稳问题。对比等时间采样的实验表明,相同实验参数下,采用等频率离散的方式比等时间离散能更快达到目标频率。在精度对比上,采用等频率离散的方式在定位精度上比等时间离散法提高39.47%。在核酸提取应用中,等频率离散法比等时间离散法可有效提高核酸样本容积20.62 μL。与传统Sigmoid函数模型实现S型曲线加减速控制算法相比,等频率离散法可提升运动定位精度使抽提过程更加顺滑,有效提高了核酸提取振荡运动下的样本容积。


Equal-frequency motion control for volume optimization ofnucleic acid extraction samples
JIANG Xin, YAO Jia, LI Dongshu, WANG Tianyi, LI Jinze, LI Yingxue, ZHOU Lianqun
1. Xuzhou Medical University, Xuzhou 221000, China;
2. Key Laboratory of Biomedical Laboratory Technology, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
3. Suzhou Guoke Xingan Medical Technology Company, Suzhou 215163, China
Abstract: In order to optimize the sample volume of nucleic acid extraction under oscillating motion, the equal frequency motion control algorithm is applied to the nucleic acid extraction process. By improving the stability of the nucleic acid extraction process, the sample volume of nucleic acid under oscillating motion is effectively improved. Based on the STM32 high precision control platform, the step motor was controlled by equal frequency discretization. The Sigmoid curve was used to realize the acceleration and deceleration process, and the smooth and accurate control of the step motor was realized. The proposed constant frequency discrete acceleration and deceleration motion control algorithm solved the problem of unstable speed change in the process of variable speed. Compared with equal-time sampling, the experimental results show that under the same experimental parameters, the method of equal-frequency discretization can achieve the target frequency faster than that of equal-time discretization. Compared with the equal time discretization method, the equal frequency discretization method improves the positioning accuracy by 39.47%. In the application of nucleic acid extraction, the constant frequency dispersion method can effectively improve the nucleic acid sample volume by 20.62 μL compared with the constant time dispersion method. Compared with the traditional Sigmoid function model to realize the S-curve acceleration and deceleration control algorithm, the equal frequency discrete method can improve the positioning accuracy of motion and make the extraction process smoother, and effectively improve the sample volume under the oscillating motion of nucleic acid extraction.
Keywords: stepper motor;nucleic acid extraction;acceleration and deceleration control;Sigmoid function;positioning accuracy
2023, 49(11):157-165  收稿日期: 2023-04-07;收到修改稿日期: 2023-05-20
基金项目: 国家自然科学基金青年基金资助项目(61901469);江苏省重点研究开发项目(BE2020768);中国科学院科研仪器设备研制项目(YJKYYQ20200046)
作者简介: 蒋新(1998-),女,湖南益阳市人,硕士研究生,专业方向为生物医学测量技术。
参考文献
[1] 张天宇, 彭忆强, 黄晓蓉, 等. 脚轮式全向移动平台的运动控制设计与仿真[J]. 中国测试, 2021, 47(7): 109-118+124. DOI: 10.11857/j.issn.1674-5124.2020090133.
[2] 庄衡衡, 丁飞, 章华涛, 等. 五自由度机器人运动控制与空间位姿仿真系统[J]. 中国测试, 2021, 47(11): 14-20.
[3] 游达章, 余 炼, 张 敏, 等. 嵌入式数控系统速度前瞻规划算法研究[J]. 兵器装备工程学报, 2020, 41(8): 187-192.
[4] LI B, YAN L, GAO X, et al. Robust adaptive control based on variable boundary for a twin-motor cable-driven system[J]. IEEE Transactions on Industrial Electronics, 2022, 69(7): 7054-7063. DOI: 10.1109/TIE. 2021.3097609.
[5] 林宝君, 郑祺峰. 发动机连杆裂解槽激光加工机床的加减速前瞻控制[J]. 光学精密工程, 2022, 30(7): 793-801.
[6] 韦宏利, 王晴悦, 周建波, 等. 自动加样分析仪多轴机械臂控制系统设计[J]. 电子测量技术, 2021, 44(7): 139-143. DOI:10.19651/j.cnki. emt.2105894.
[7] 杨九林, 朱建公, 廖 璇, 等. 直流无刷电机S曲线加减速控制算法及其实现[J]. 机床与液压, 2020, 48(23): 160-165. DOI:10.3969/j. issn.1001-3881.2020.23.031.
[8] THO HD, KANESHIGE A, TERASHIMA K. Minimum-time s-curve commands for vibration-free transportation of an overhead crane with actuator limits[J]. Control Engineering Practice, 2020, 98: 104390.
[9] LU T C, CHEN S L, YANG E C Y. Near time-optimal s-curve velocity planning for multiple line segments under axis constraints[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9582-9592. DOI 10.1109/TIE.2018.2818669.
[10] BAI Y, CHEN X, SUN H, et al. Time-optimal freeform s-curve profile under positioning error and robustness constraints[J]. IEEE Transactions on Mechatronics, 2018, 23(4): 1993-2003. DOI:10.1109/TMECH.2018. 2835830.
[11] EMAMI M M, AREZOO B. A look-ahead command generator with control over trajectory and chord error for nurbs curve with unknown arc length[J]. Computer-Aided Design, 2010, 42(7): 625-632.
[12] 李志杰, 蔡力钢, 刘志峰. 加加速度连续的S型加减速规划算法[J]. 计算机集成制造系统, 2019, 25(5): 1192-1201. DOI:10.13196/j.cims. 2019.05.017.
[13] 宋建国, 韩鹏杰, 卢 意. 步进电机S曲线精确控制的研究与验证[J]. 电机与控制应用, 2021, 48(11): 27-32.
[14] 韩业鹏, 王孝伟, 陈从桂, 等. S曲线加减速控制在数控机床研究中的应用进展[J]. 机电工程技术, 2020, 49(3): 170-173+203. DOI: 10. 3969/j.issn.1009-9492.2020.03.062.
[15] 周团坤, 张莹, 杨晓明, 等. 基于STM32的步进电机离散化S形曲线加减速控制方法[J]. 自动化与仪表, 2017, 32(6): 57-61.