您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>耦合PZT/GMM微动力构件及其输出力影响因素测试

耦合PZT/GMM微动力构件及其输出力影响因素测试

2930    2017-11-01

免费

全文售价

作者:廖胜凯1, 徐爱群1, 吴礼琼1, 于海阔2

作者单位:1. 浙江科技学院机械与汽车工程学院, 浙江 杭州 310023;
2. 浙江工业大学机械工程学院, 浙江 杭州 310014


关键词:压电陶瓷;超磁致伸缩材料;微动力;电压;气隙


摘要:

在压电陶瓷(PZT)和超磁致伸缩材料(GMM)两种功能材料的特性研究基础上,设计一种耦合PZT/GMM微动力构件。通过分析微动力构件的工作原理,得知其输出力受到电压、气隙、温度等因素的影响。该文就电压和气隙两种影响因素分析微动力构件的输出力,通过对比理论分析和实验结果得到:在10~120 V电压调节范围内,电压升高微动力构件输出力呈非线性增长,且这种增长效应在气隙越小时表现越明显;恒定电压条件下,在0~1.2 mm微动力构件气隙增大,微动力构件输出力呈非线性减小。


Measurement on influence factors on coupled PZT/GMM micro dynamic component and its output force

LIAO Shengkai1, XU Aiqun1, WU Liqiong1, YU Haikuo2

1. School of Mechanical and Automotive Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

Abstract: Based on the study of the characteristics of two kinds of functional materials,piezoelectric ceramic (PZT) and giant magnetostrictive material (GMM),a coupled PZT/GMM micro dynamic component is designed.By analyzing the working principle of micro dynamic component,it can be known that the output force of the micro power component is affected by the factors such as voltage,air gap and temperature.The effect of voltage and air gap on the output force of micro dynamic component is analyzed in the paper.Through comparative theoretical analysis and experimental research,the effects of the voltage and air gap on the output force of the micro dynamic component are got.In the range of 10-120 V voltage,the output power of the micro dynamic component increases nonlinearly with the rise of voltage,and the smaller the air gap,the more obvious of the rise effect.Under constant voltage,however,from 0 to 1.2 mm of the air gap,the output power of the micro power component decreases nonlinearly.

Keywords: PZT;GMM;micro dynamic;voltage;air gap

2017, 43(10): 139-144  收稿日期: 2017-02-20;收到修改稿日期: 2017-04-15

基金项目: 浙江省自然科学基金资助项目(LY14E050016);浙江科技学院研究生科研创新基金(2015YJSKC004)

作者简介: 廖胜凯(1992-),男,安徽六安市人,硕士研究生,专业方向为微机电系统。

参考文献

[1] YOSHIOKA H, SHINNO H, SAWANO H. A newly developed rotary-linear motion platformwith a giant magnetostrictiveactuator[J]. CIRP Annais-Manufacturing Technology,2013,62(1):371-374.
[2] 李锦. 近场超声非接触支撑与传输系统的理论与实验研究[D]. 上海:上海交通大学,2012.
[3] 郑双,高荣慧,王勇. 重力场下垂直微力发生装置的研究[J]. 合肥工业大学学报(自然科学版),2014,37(2):134-136.
[4] 盛阳,赵美蓉,刘明,等. 超微力发生系统及其电容采集模块的设计[J]. 传感技术学报,2010,23(10):1505-1509.
[5] 余志强,张国民,邱清泉,等. 高温超导磁悬浮轴承的研究进展[J]. 电工电能新技术,2014,33(7):55-60.
[6] 徐爱群,宋小文,胡树根. 超磁致伸缩振动器谐振频率自感知机理研究[J]. 振动与冲击,2010,29(3):26-29.
[7] JUDY J W. Microelectromechanical systems(MEMS) fabrication, design and applications[J]. J of Smart Materials and Structures,2001,10(6):1115-1134.
[8] UENO T, QIU J, TANI J. Magnetic force control based on the inverse magnetostrictive effect[J]. IEEE Transactions on Magnetics,2004,40(3):1601-1605.
[9] 赖志林,刘向东,耿洁,等. 压电陶瓷执行器迟滞的滑模逆补偿控制[J]. 光学精密工程,2011,19(6):1281-1290.
[10] 贾振元,郭东明. 超磁致伸缩材料微位移执行器原理及应用[M]. 北京:科学出版社,2008:1-3.
[11] XU H, PEI Y M, FANG D N, et al. An energy-based dynamic loss hysteresis model for giant magnetostrictive materials[J]. International Journal of Solids and Structures,2013,50(5):672-679.
[12] YASHIDE S, YUZO K, KOTARO M. Electromagneto-mechanical fields of giant magnetostrictive/piezoelectric laminates under concentrated load[J]. International Journal of Smart and Nano Materials,2012,3(2):169-182.
[13] 汤子凡,张代化,王艳艳,等. MEMS器件在药物释放中的应用和展望[J]. 纳米技术与精密工程,2016,14(5):322-330.
[14] 张福学. 现代压电学(上册)[M]. 北京:科学出版社,2001:91-100.
[15] 靳宏,金龙,徐志科,等. 压电叠堆位移放大制动器的动态特性[J]. 振动与冲击,2012,31(21):146-150.
[16] 邹继斌,刘宝廷,崔淑梅,等. 磁路与磁场[M]. 哈尔滨:哈尔滨工业大学出版社,1997:50-525.
[17] 欧小伟. 磁电层合材料器件中预应力控制下的磁-力-电耦合效应研究[D]. 杭州:中国计量学院,2013.