您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>1,25-二羟基维生素D3通过诱导基质金属蛋白酶7的表达上调小鼠肠道中活性防御素

1,25-二羟基维生素D3通过诱导基质金属蛋白酶7的表达上调小鼠肠道中活性防御素

3600    2016-09-18

免费

全文售价

作者:陈子硕, 刘誉

作者单位:四川大学生命科学学院, 四川 成都 610064


关键词:1,25-二羟基维生素D3;维生素D受体基因敲除鼠;基质金属蛋白酶7;α防御素


摘要:

为探索维生素D对肠道先天免疫抗菌肽-防御素1(alpha-1-defensin,DEFA1)剪切酶基质金属蛋白酶7(matrix metalloproteinase 7,MMP-7)的调控,利用维生素D受体基因敲除小鼠(Vitamin D receptor knock-out,VDR-KO)与肠道细胞系作为研究模型,通过免疫组化染色、qRT-PCR及免疫印迹等研究方法,发现其肠道细胞中MMP-7的转录水平与蛋白水平较野生型(wild type,WT)小鼠显著降低,并且DEFA1的表达量也较低,表明维生素D可以调控肠道MMP-7的表达,从而影响DEFA1的成熟。同时,体外细胞实验表明:1,25-二羟基维生素D3能够上调肠道细胞MMP-7的转录水平和蛋白水平。初步表明,维生素D通过调控MMP-7的表达影响DEFA1的成熟,而维生素D缺失,MMP-7下调从而DEFA1下调,进一步可能造成肠道菌群失调,导致多种慢性疾病的发生。


1,25(OH)2VD3 up regulates activation of α-defensins through induction of MMP-7 in mouse intestine

CHEN Zishuo, LIU Yu

College of Life Sciences, Sichuan University, Chengdu 610064, China

Abstract: The aim of this study was to find the role of VD in regulating the active form of α-defensin 1(DEFA1), one of the antibacterial peptides in mouse intestine. It showed that the active DEFA1 was much lower in VDR knock-out mice compared to the wild type(WT) mice. Both mRNA and protein of matrix metalloproteinase-7(MMP-7), the cleaved enzyme of DEFA1, as detected by immumohistochemical staining and qRT-PCR, were at a relatively low level. In vitro experiment showed that VD can induce the expression of MMP-7 in colon cells. Thus, it suggested that VD can regulate the expression of MMP-7. When VD was deficient, MMP-7 was down-regulated and so was the active form of DEFA1, it might lead to impairment of intestinal innate immunity and dysbiosis and drive chronic disorders.

Keywords: 1,25(OH)2VD3;Vitamin D receptor knock-out mice;matrix metalloproteinase-7;α-defensin

2016, 42(8): 57-63  收稿日期: 2016-3-20;收到修改稿日期: 2016-4-25

基金项目: 

作者简介: 陈子硕(1990-),女,江苏徐州市人,硕士研究生,专业方向为代谢综合征、肠道菌群细胞生物学。

参考文献

[1] YUAN-PING H, MING K, SUJUN Z, et al. Vitamin D in liver diseases:from mechanisms to clinical trials[J]. Journal of Gastroenterology & Hepatology,2013,28(28):49-55.
[2] FARACH-CARSON M C, RIDALLl A L. Dual 1,25-dihydroxyvitamin D3 signal response pathways in osteoblasts:Cross-talk between genomic and membrane-initiated pathways[J]. American Journal of Kidney Diseases,1998,31(4):729-742.
[3] CANTORNA M T, SNYDER L, LIN Y D, et al. Vitamin D and 1,25(OH)2 dregulation of tcells[J]. Nutrients,2015,7(4):3011-3021.
[4] MORALES-TIRADO V, WICHLAN D G, LEIMING T E, et al. 1α,25-dihydroxyvitamin D3(vitamin D3) catalyzes suppressive activity on human natural regulatory T cells, uniquely modulates cell cycle progression and augments FOXP3[J]. Clinical Immunology,2011,138(2):212-221.
[5] BOONSTRA A, BARRAT F J, CRAIN C, et al. 1 alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells[J]. Journal of Immunology,2001,167(9):4974-4980.
[6] HLAVATY T, KRAJCOVICOVA A, KOLLER T, et al. Higher vitamin D serum concentration increases health related quality of life in patients with inflammatory bowel diseases[J]. World Journal of Gastroenterology,2014, 20(42):15787-15796.
[7] TAO Q, WANG B, ZHENG Y, et al. Vitamin D prevents the intestinal fibrosis via induction of vitamin D receptor and inhibition of transforming growth factor-beta1/smad3 pathway[J]. Digestive Diseases & Sciences,2014,60(4):868-875.
[8] ZHENG W, WONG K E, ZHANG Z, et al. Inactivation of the vitamin D receptor in APC min/+ mice reveals a critical role for the vitamin D receptor in intestinal tumor growth[J]. International Journal of Cancer Journal International Du Cancer,2012,130(1):10-19.
[9] CHEN S W, WANG P Y, ZHU J, et al. Protective Effect of 1,25-Dihydroxyvitamin D3 on Lipopolysaccharide-Induced Intestinal Epithelial Tight Junction Injury in Caco-2 Cell Monolayers[J]. Inflammation,2014,38(1):375-383.
[10] WU S, ZHANG Y G, LU R, et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis[J]. Gut,2015,64(7):1082-1094.
[11] STAPPENBECK T S. Paneth cell development, differentiation and function: new molecular cues[J]. Gastroenterology,2009,137(1):30-33.
[12] OUELLETTE A J. Paneth cells and innate mucosal immunity[J]. Current Opinion in Gastroenterology,2010,26(6):547-553.
[13] SMITH G P. Normal Immune Function and Barrier: Defensins[M]. Encyclopedia of Medical Immunology. New York:Springer,2014:805-807.
[14] GHOSH D, PORTER E, SHEN B, et al. Paneth cell trypsin is the processing enzyme for human defensin-5[J]. Nature Immunology,2002,3(6):583-590.
[15] AYABE T, SATCHELL D P, PESENDORFER P, et al. Activation of paneth cell α-defensins in mouse small intestine[J]. Journal of Biological Chemistry,2002,277(7):5219-5228.
[16] YOSHINORI S, HIROKI T, SATCHELL D P, et al. Structural determinants of procryptdin recognition and cleavage by matrix metalloproteinase-7[J]. Journal of Biological Chemistry,2003,278(278):7910-9.
[17] LI Y C, PIRRO A E, AMLING M, et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia[J]. Proc Natl Acad Sci Usa,1997,94(18):9831-5.
[18] AYABE T, SATCHELL D P, WILSON C L, et al. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria[J]. Nature Immunology,2000,1(2):113-118.
[19] KELLY P, FEAKINS R, DOMIZIO P, et al. Paneth cell granule depletion in the human small intestine under infective and nutritional stress[J]. Clinical & Experimental Immunology,2004,135(2):303-309.
[20] BEVINS C L. Paneth cell defensins: key effector molecules of innate immunity[J]. Biochemical Society Transactions,2006,34(2):263-6.
[21] OUELLETTE A J. Defensin-mediated innate immunity in the small intestine[J]. Best Practice & Research Clinical Gastroenterology,2004,18(2):405-19.
[22] GANG Y, DIDIER M, SELSTED M E, et al. Cryptdin 3 forms anion selective channels in cytoplasmic membranes of human embryonic kidney cells[J]. Ajp Gastrointestinal & Liver Physiology,2002,282(5):730.
[23] LIN P W, SIMON P O, GEWIRTZ A T, et al. Paneth cell cryptdins act in vitro as apical paracrine regulators of the innate inflammatory response[J]. Journal of Biological Chemistry,2004,279(19):19902-7.
[24] YAN C, FANTACONE M L, GOMBART A F. Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism[J]. European Journal of Nutrition,2012,51(8):899-907.
[25] DAI X J, SAYAMA K, TOHYAMA M, et al. PPARγ mediates innate immunity by regulating the 1α,25-dihydroxyvitamin D3 induced hBD-3 and cathelicidin in human keratinocytes[J]. Journal of Dermatological Science,2010,60(3):179-186.
[26] TIAN-TIAN W, BASEL D, DAVID L, et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease[J]. Journal of Biological Chemistry,2010,285(4):2227-2231.
[27] WILLIAM P, STEVEN S. Matrix metalloproteinases in lung biology[J]. Respiratory Research,2001,2(1):10-19.
[28] LI Q, PARK P W, WILSON C L, et al. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury[J]. Cell,2002,111(5):635-46.
[29] CALEY M P, MARTINS V L, O'TOOLE E A. Metalloproteinases and wound healing[J]. Advances in Wound Care,2015,4(4):225-234.