您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于空气耦合超声导波法对开闭器水层厚度的研究

基于空气耦合超声导波法对开闭器水层厚度的研究

2895    2019-09-29

免费

全文售价

作者:常俊杰1,2, 曾雪峰1

作者单位:1. 南昌航空大学 无损检测技术教育部重点实验室, 江西 南昌 330063;
2. 日本探头株式会社, 横滨 232-0033


关键词:空气耦合超声;导波;开闭器;水层厚度


摘要:

针对传统接触式超声检测高压电线杆开闭器水层厚度存在漏电风险问题,提出使用非接触式空气耦合超声导波技术对开闭器中水层厚度进行测量。对开闭器水中导波传播过程进行仿真并计算水层厚度;搭建开闭器实验室平台,控制水层厚度,改变换能器之间距离,对回波信号进行分析并计算水层厚度;控制换能器之间距离,改变水层厚度,对回波信号进行分析并计算水层厚度。通过仿真与实验使用几何声学对水层厚度进行计算得出关系式,将仿真与实验两者结果进行对比,有高度一致性,验证空气耦合超声导波法对开闭器中水层厚度测量的可行性与准确性。该方法可为测量开闭器中水层厚度提供新思路。


Research on water depth of switch on column based on air-coupled ultrasonic guided wave
CHANG Junjie1,2, ZENG Xuefeng1
1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;
2. Japan Probe Co., Ltd., Yokohama 232-0033, Japan
Abstract: Aiming at the problem that leakage of electricity in the process of traditional contact ultrasonic detection of water layer thickness of high-voltage wire pole switch, a non-contact air-coupled ultrasonic guided wave technology is proposed to measure the water layer thickness of the switch. Simulated the guided wave propagation process in the water of the switch and calculated the thickness of the water layer. A laboratory platform was set up, and the thickness of the water layer was controlled, the echo signal was analyzed and the water layer thickness was calculated by changing the distance between the transducers. Then, the distance between transducers was controlled, the thickness of water layer was changed, the echo signal was analyzed and the thickness of water layer was calculated. The relationship between simulation and experiment is obtained by using geometric acoustics to calculate the thickness of water layer. The results of simulation and experiment are highly consistent, which verifies the feasibility and accuracy of the air-coupled ultrasonic guided wave method for measuring the thickness of water layer in the switch and provides a new method for measuring the thickness of water layer in the opener and closer. It provides a new development for air-coupled ultrasound.
Keywords: air coupled ultrasound;guided wave;switch;water layer thickness
2019, 45(9):27-32  收稿日期: 2018-11-14;收到修改稿日期: 2018-12-12
基金项目: 国家自然科学基金资助项目(11464030);无损检测技术教育部重点实验室(南昌航空大学)开放基金课题(F010404)
作者简介: 常俊杰(1964-),辽宁大连市人,副教授,博士,主要从事超声无损检测的应用技术研究及检测设备的研发等工作
参考文献
[1] NAKAHATA K, CHANG J, TAKAHASHI M, et al. Finite integration technique for coupled acoustic and elastic wave simulation and its application to noncontact ultrasonic testing[J]. Acoustical Science and Technology, 2014, 35(5):260-268
[2] CHANG J, LU C, KAWASHIMA K. Development of Non-contact Air Coupled Ultrasonic Testing system for reinforced concrete structure[C]//Nondestructive Evaluation/Testing:New Technology & Application (FENDT), 2013 Far East Forum on. IEEE, 2013:197-200.
[3] 常俊杰, 卢超, 川嶋紘一郎. 非接触空气耦合超声波的材料无损评价与检测[J]. 浙江理工大学学报, 2015, 33(7):532-642
[4] 常俊杰, 李媛媛, 李光亚. 钢轨轨头浅表面缺陷的空气耦合超声导波检测[J]. 无损检测, 2018, 40(3):20-24
[5] 周正干, 冯海伟. 超声导波检测技术的研究进展[J]. 无损检测, 2006, 28(2):57-63
[6] CASTAINGS M, CAWLEY P. The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers[J]. The Journal of the Acoustical Society of America, 1996, 100(5):3070-3077
[7] 常俊杰, 卢超, 小仓幸夫. 非接触空气耦合超声检测原理及应用研究[J]. 无损探伤, 2013, 37(4):6-11
[8] 周正干, 魏东. 空气耦合式超声波无损检测技术的发展[J]. 机械工程学报, 2008, 44(6):10-14
[9] CASTAINGS M, HOSTEN B. Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates[J]. Ndt & E International, 2001, 34(4):249-258
[10] 饶璐雅. 复合材料层板冲击损伤空气耦合兰姆波成像检测方法研究[D]. 南昌:南昌航空大学, 2017.
[11] 饶璐雅, 陈果, 卢超. 碳纤维复合材料层板冲击损伤的空气耦合兰姆波成像检测[J]. 宇航材料工艺, 2017, 47(5):69-74
[12] 常俊杰, 魏强, 卢超. 非接触空气耦合超声波钢板探伤的应用研究[J]. 浙江理工大学学报, 2015, 33(11):829-834
[13] 张东波, 赵金峰, 潘永东. 空耦超声激发板波的COMSOL模拟[J]. 南京大学学报(自然科学), 2015, 51(S1):129-133
[14] 张迪, 吴先梅. 基于有限元的空耦超声相控阵Lamb波激发与检测[J]. 应用声学, 2015, 34(3):201-206
[15] NISHINO H, MASUDA S, YOSHIDA K, et al. Theoretical and experimental investigations of transmission coefficients of longitudinal waves through metal plates immersed in air for uses of air coupled ultrasounds[J]. Materials Transactions, 2008, 49(12):2861-2867