您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>连续束γ射线电离室复合效应修正测量方法研究

连续束γ射线电离室复合效应修正测量方法研究

2303    2020-05-27

免费

全文售价

作者:宋明哲, 滕忠斌, 倪宁, 侯金兵, 张曦, 魏可新, 刘蕴韬

作者单位:中国原子能科学研究院计量与校准技术国防科技重点实验室, 北京 102413


关键词:放射性计量学;复合效应修正;Nital方法;电离室;连续束γ射线


摘要:

该文总结目前国内外文献中用于获得电离室复合效应修正因子ks的3种方法:实验外推法、双电压法以及Nital方法。在137Cs γ射线辐射场中,分别使用上述3种方法计算300 cm3球型石墨空腔电离室的ks,并详细地给出评估ks测量不确定度的方法。在60Co γ射线辐射场中,以同样的方式获得3种方法下的10 cm3球型石墨空腔电离室的ks。结果显示,对于10 cm3和300 cm3电离室,由不同方法得到的复合修正因子ks相差在0.64%之内。并且在60Co γ射线辐射场中,通过比较1/I与1/V和1/V2的线性关系,得出剂量率在不大于38.65(66) Gy/h时10 cm3电离室的初始复合修正为复合效应修正的主要部分。


Study on the determination of the recombination correction of ionization chamber for continuous γ-ray beam
SONG Mingzhe, TENG Zhongbin, NI Ning, HOU Jinbing, ZHANG Xi, WEI Kexin, LIU Yuntao
Division of Radiation Metrology of China Institute of Atomic Energy, Beijing 102413, China
Abstract: Three methods, experimental extrapolation method, double-voltage method and Nital method, presently used to obtain the recombination correction factor ks of the ionization cavity chamber were summarized. In the 137Cs γ-ray radiation field, the ks of a 300 cm3 spherical graphite cavity chamber were calculated by the above three methods, and the uncertainty of ks obtained by the Nital method was given in detail. In the 60Co γ-ray radiation field, the ks of a 10 cm3 spherical graphite cavity ionization chamber were also obtained using those three methods. The results show that for the 10 cm3 and 300 cm3 cavity chambers, the ks obtained by different methods differ within 0.64%. And in the 60Co γ-ray radiation field, by comparing the linear relationship between 1/I and 1/V or 1/V2, the initial recombination of the 10 cm3 cavity chamber dominates the total recombination losses at a dose rate of not more than 38.65(66) Gy/h.
Keywords: radiation metrology;recombination correction;Nital method;ionization chamber;continuous γ-rays
2020, 46(5):25-30  收稿日期: 2019-12-02;收到修改稿日期: 2020-01-22
基金项目:
作者简介: 宋明哲(1983-),男,吉林松原市人,硕士生导师,博士,研究方向为电离辐射计量
参考文献
[1] ANDREO P, BURNS D T, NAHUM A E, et al. Fundamentals of ionizing radiation dosimetry[M]. Berlin: Wiley-VCH, 2017: 513-524.
[2] KASE K R, BJARNGARD B E, ATTIX F H. The dosimetry of ionizing radiation, vol. Ⅱ[M]. New York: Academic Press, 1987: 169-243.
[3] 邬蒙蒙. Cs-137γ射线空气比释动能绝对测量的研究[D]. 成都: 成都理工大学, 2013.
[4] 吴金杰, 杨元第. 中能X射线空气比释动能的绝对测量[C]// 2010中国仪器仪表与测控技术大会论文集. 北京: 仪器仪表学报出版社, 2010.
[5] ALMOND P R. Use of a Victoreen 500 electrometer to determine ionization chamber collection efficiencies[J]. Medical Physics, 1981, 8(6): 901-904
[6] ALMOND P R, BIGGS P J, COURSEY B M, et al. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams[J]. Medical Physics, 1999, 26(9): 1847-1870
[7] WEINHOUS M S, WELI J A. Determining Pion, the correction factor for recombination losses in an ionization chamber[J]. Medical Physics, 1984, 11(6): 846-849
[8] DE ALMEIDACE, NIATELMT. Rapport BIPM-1986/12: Comparison between IRD and BIPM exposure and air-kerma standards for cobalt gamma rays[EB/OL]. Paris: BIPM, 1986. https://www.bipm.org/en/publications/.
[9] BOUTILLON M. Volume recombination parameter in ionization chambers[J]. Physics in Medicine and Biology, 1998, 43(8): 2061-2072
[10] PIERMATTEI A, AZARIO L, ARCOVITO G, et al. Ion-recombination correction factor ksat for spherical ion chambers irradiated by continuous photon beams[J]. Physics in Medicine and Biology, 1996, 41(6): 1025-1035
[11] PALMANS H, THOMAS R A S, DUANE S. Ion recombination for ionization chamber dosimetry in a helical tomotherapy unit[J]. Medical Physics, 2010, 37(6): 2876-2889
[12] BURNS D T, ROGERP. CCRI(I)/01-07: Characterization of the BIPM low-energy x-ray facility following a change of x-ray tube and high-voltage generator[EB/OL]. https://www.bipm.org/en/publications/, 2001.
[13] 李德红, 王培玮, 邬蒙蒙, 等. 137Csγ射线空气比释动能基准石墨空腔电离室的研制[J]. 计量学报, 2016(37): 324-327
[14] 李德红, 成建波, 王培玮, 等. γ射线空气比释动能测量不确定度分析[J]. 计量学报, 2016(37): 445-447
[15] 李景云, 郭文. 60Co和137Csγ射线参考辐射及测定其空气比释动能(率)的系列空腔电离室[J]. 辐射防护, 1996, 16(2): 88-97
[16] ALLISY-ROBERTS P J, KESSLER C, BURNS D T, et al. Summary of the BIPM. RI(I)-K5 comparison for air kerma in 137Cs gamma radiation[J]. Metrologia, 2013, 50(Tech. Suppl.): 1-10
[17] ALLISY-ROBERTS P J, BURNS D T, KESSLER C, et al. Summary of the BIPM. RI(I)-K1 comparison for air kerma in 60Co gamma radiation[J]. Metrologia, 2007, 44(1A): 1-15
[18] PARK S H, KIM H S, KIM Y K, et al. Saturation characteristics of the ionization chamber at a low dose rate[J]. Radiation Physics and Chemistry, 2005, 73(5): 248-253
[19] 测量不确定度评定与表示: JJF 1059.1—2012[S]. 北京: 中国质检出版社, 2012.