您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>梯度校正法燃气热值测量装置抽气系统建模

梯度校正法燃气热值测量装置抽气系统建模

908    2021-10-27

免费

全文售价

作者:刘伟, 王玉刚, 张洪军, 赵晓东, 潘江

作者单位:中国计量大学计量测试工程学院,浙江 杭州 310018


关键词:燃气热值测量;抽气系统;数学模型;梯度校正;参数辨识


摘要:

直接燃烧法测量可燃气体热值可以将热值溯源到基本物理量,具有最高的准确度。针对燃气热值测量装置中抽气控制需要进行变速抽气的情况,提出一种基于梯度校正法来建立抽气系统数学模型的方法。将抽气活塞运行速度值赋值给对应的M序列码值,作为系统激励信号发送至下位机,压差传感器测得不同运行速度下的燃烧室进、出气口两端压差作为响应信号,根据激励和响应的实验数据,使用梯度校正法建立模型。该方法建立燃气热值测量装置抽气系统的二阶数学模型,在进行空气实验和混合供气实验工况下,该模型计算值和实验值的相对误差平均值分别为0.42%和0.45%,压差值误差平均值分别为0.15 Pa和0.16 Pa。有效地保证燃气热值测量中燃烧过程的稳定进行。


Modeling for gas calorific value measurement apparatus gas-extraction system based on the gradient correction method
LIU Wei, WANG Yugang, ZHANG Hongjun, ZHAO Xiaodong, PAN Jiang
College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
Abstract: Direct combustion method can trace the calorific value of flammable gas to the fundamental physical quantities, which has the highest accuracy class. This paper described a gas-extraction system mathematical model which was based on the gradient correction method. The variable speed gas-extraction was required to the gas calorific value measurement apparatus. The operating speed value of gas-extraction piston was assigned to the corresponding M sequence code value. The code value was sent to lower computer as the system excitation signals. The pressure difference was acquired as the response signals and it was measured by the differential pressure transducer between the inlet and outlet of the combustion chamber at different operating speeds. Using the excitation and response experimental data, a second-order mathematical model for gas-extraction system of gas calorific value measuring apparatus was established. The single air and multi-component gas supply experiments were carried out respectively. It showed that the average relative errors were 0.42% and 0.45% between this model and the experiment result. The average errors of pressure difference were 0.15 Pa and 0.16 Pa. This method effectively could ensure the stability of the combustion process in the measurement of gas calorific value.
Keywords: gas calorific value measurement;gas-extraction system;mathematical model;gradient correction;parameters identification
2021, 47(10):123-128,160  收稿日期: 2020-12-24;收到修改稿日期: 2021-01-25
基金项目: 国家质检公益性行业科研专项项目(201410133)
作者简介: 刘伟(1994-),男,四川宜宾市人,硕士研究生,专业方向为燃气热值测量装置中的抽气控制
参考文献
[1] ROSSINI F D. The heats of combustion of methane and carbon monoxide[J]. Bureau of Standards Journal of Research, 1931(6): 37-49
[2] SCHLEY P, BECK M, UHRIG M, et al. Measurements of the calorific value of methane with the new GERG reference calorimeter[J]. International Journal of Thermophysics, 2010, 31(4): 665-679
[3] HALOUA F, HAY B, FILTZ J R. New French reference calorimeter for gas calorific value measurements[J]. Journal of Thermal Analysis and Calorimetry, 2009, 97(2): 673-678
[4] 俞秀慧, 李醒亚, 贺锡衡, 等. 标准绝热型氧弹式热量计及高纯甲烷热值的测定[J]. 计量学报, 1988, 9(2): 115-119
[5] 王海峰, 李佳, 孙国华, 等. 基准气体热量计研究进展[J]. 石油与天然气化工, 2014, 43(2): 196-199
[6] 李克, 潘春锋, 张宇, 等. 天然气发热量直接测量及赋值技术[J]. 石油与天然气化工, 2013, 42(3): 297-301
[7] 吕丹妮, 张洪军, 韩伟栋. Rossini型燃气热值测量装置中的几个关键技术[J]. 仪器仪表学报, 2014, 35(S2): 151-154
[8] 王玉刚, 吴军, 叶方平, 等. Rossini型气体热量计电校正实验与分析[J]. 中国测试, 2019, 45(2): 83-88
[9] 王玉刚, 杜军燕, 潘江, 等. Rossini型气体热量计非稳态温度场的优化分析[J]. 中国测试, 2017, 43(8): 119-124
[10] 竺林坤, 胡佳成, 李东升, 等. 燃气热值计量标准的尾气收集装置精度设计[J]. 计算机测量与控制, 2016, 24(4): 199-201
[11] 王顺晃, 舒迪前. 智能控制系统及其应用[M]. 北京: 机械工业出版社, 1995: 135-139.
[12] 洪涛, 梁晓瑜, 马榕, 等. 四轴无人机姿态测量及三维模型显示系统设计[J]. 中国测试, 2020, 46(4): 109-115
[13] 侯媛彬, 汪梅, 王立琦. 系统辨识及其MATLAB仿真[M]. 北京: 科学出版社, 2004: 90-100.
[14] 谢建, 李良, 黄建朝. 基于梯度校正法的非对称液压缸建模与参数辨识[J]. 机床与液压, 2013, 41(3): 124-126
[15] 张永涛, 曹喜果. 改进遗传模拟退火算法在电站机组协调控制系统辨识中的应用[J]. 中国测试, 2020, 46(8): 131-136