登录    |    注册

您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于AR技术机械臂物料抓取系统设计

基于AR技术机械臂物料抓取系统设计

161    2021-11-23

¥0.50

全文售价

作者:张青春, 姚胜, 郭振久, 何孝慈

作者单位:淮阴工学院自动化学院,江苏 淮安 223003


关键词:机械臂;机器视觉;BM匹配;三维重建


摘要:

为实现机械臂在其工作范围内对任意位置的目标的抓取,提出一种基于增强现实(AR)技术机械臂物料抓取系统。系统采用多目视觉对目标定位,其中,单目视觉根据单目视觉原理建立全局空间定位模型并同时将摄取的环境上传至上位机,双目视觉基于改进的BM匹配算法获取目标的深度信息,转换得到目标的三维信息,然后将坐标信息传递给机械臂,驱动机械臂根据坐标实现对目标物的抓取。最后进行立体匹配试验和目标抓取实验。实验结果表明:基于AR技术机械臂物料抓取系统结构简单,目标识别速度快,精度高,系统的安全性和稳定性较高,具有很大的推广价值。


Design of material grabbing system of manipulator based on AR technology
ZHANG Qingchun, YAO Sheng, GUO Zhenjiu, HE Xiaoci
Automation Faculty, Huaiyin Institute of Technology, Huai’an 223003, China
Abstract: In order to grasp the object at any position within the working range of the manipulator, a material grasping system based on augmented reality technology is proposed. The system uses multi vision to locate the target. Monocular vision establishes the global spatial positioning model according to the monocular vision principle, and uploads the captured environment to the host computer at the same time. Binocular vision obtains the depth information of the target based on the improved BM matching algorithm, transforms the three-dimensional information of the target, and then transmits the coordinate information to the manipulator, which drives the manipulator to realize the target positioning according to the coordinates grasp the target. Finally, stereo matching experiment and target grabbing experiment are carried out. The experimental results show that: Based on AR technology, the mechanical arm material grabbing system has the advantages of simple structure, fast target recognition speed, high accuracy, high security and stability, and has great promotion value.
Keywords: manipulator;machine vision;BM matching;3D reconstruction
2021, 47(11):41-46  收稿日期: 2021-04-11;收到修改稿日期: 2021-06-22
基金项目:
作者简介: 张青春(1964-),男,江苏淮安市人,教授,研究方向为智能检测技术、无线传感器、机器人与物联网、虚拟仪器技术等
参考文献
[1] 赵晨园, 李文新, 张庆熙. 双目视觉的立体匹配算法研究进展[J]. 计算机科学与探索, 2020, 14(7): 1104-1113
[2] WANG Y, WU Z, DUAN X, et al. Design of Gear Defect Detection System Based on Machine Vision[C]//IOP conference series: earth and environmental science, 2018.
[3] 项新建, 王乐乐, 曾航明. 基于机器视觉的推力轴承垫圈缺陷检测系统研究[J]. 中国测试, 2021, 47(2): 133-139
[4] 刘益鸣. 基于机器视觉移动机械臂运动控制与目标抓取[D]. 大连: 大连海事大学, 2020.
[5] 钱志敏. 基于多目视觉的工业机器人应用研究[D]. 成都: 电子科技大学, 2019.
[6] 张曙, 华云松. 基于双目立体视觉的目标物定位研究[J]. 软件导刊, 2018, 17(2): 198-201
[7] SHEN T, LIU W B, WANG J. Distance measurement system basedon binocular system vision[J]. Electronic Measurement Technology, 2015, 38(4): 58-60
[8] HAO L, YEN L C, CHANG T H . Binocular vision positioning for robot grasping[J]. IEEE International Conference on Robotics and Biomimetics, 2011, 7(11): 1522-1527
[9] KITAGAWA M. SHIMIZU I. High accuracy local stereomatching using DoGscale map[C]//Proceedings of the 15th IAPR Intermational Conference on Machine Vision Applications, Piscataway: IEEE, 2017: 258-261.
[10] 王昕, 马岩, 杨剑, 等. 区域立体匹配算法的实现及改进[J]. 光学精密工程, 2008, 16(10): 2002-2007
[11] 夏志伟. 移动机槭臂目标抓取轨迹规划与控制系统设计[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[12] 李先祥, 陈思琪, 肖红军, 等. 基于SGBM算法与BM算法的三维重建分析[J]. 自动化与信息工程, 2019, 40(5): 6-10