您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>三相LCL/P补偿无线充电系统设计与建模分析

三相LCL/P补偿无线充电系统设计与建模分析

1236    2022-08-17

免费

全文售价

作者:周成虎1, 黄明明1, 高振东1, 黄全振1, 袁勋2, 皇普恩3

作者单位:1. 河南工程学院电气信息工程学院,河南 郑州 451191;
2. 郑州大学电气工程学院,河南 郑州 450001;
3. 河南师范大学软件学院,河南 新乡 453007


关键词:无线充电;磁感应强度;谐振电压;谐振电流


摘要:

针对无线充电系统磁耦合机构补偿元件的谐振电压高、谐振环流大以及磁感应强度高的问题,该文研制一种基于三相逆变器和三相LCL/P补偿的无线充电系统。首先通过仿真对比分析传统单相无线充电系统和三相无线充电系统的特性,在此基础上推出三相逆变器的开关周期平均理论模型,提出电路的闭环控制策略。理论与仿真分析表明:与单相补偿结构的无线充电系统相比,该文研制的三相无线充电系统补偿元件电压、电流是同样功率等级单相电路的1/3~1/2,原边线圈的磁感应强度是同样功率等级单相电路的1/3以下;在负载相同的条件下,三相逆变器每个开关管承受的电流相当于单相全桥逆变器开关管承受电流的2/3,电流路径中开关管导通电压下降1/3;将两级控制系统简化为单级闭环控制系统,可提高电路的稳定性和可靠性。最后,根据上述原理搭建2 kW无线充电系统样机,从直流电源到负载的传输效率达到95%,通过实验可证明该文所述电路结构与原理分析的有效性与准确性。


Design and modeling analysis of three-phase LCL/P compensated wireless charging system
ZHOU Chenghu1, HUANG Mingming1, GAO Zhendong1, HUANG Quanzhen1,2,3
1. School of Electrical Information Engineering, Henan University of Engineering, Zhengzhou 451191, China;
2. School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China;
3. School of Software, Henan Normal University, Xinxiang 453007, China
Abstract: Aiming at the problems of high resonant voltage, large resonant circulation and high magnetic induction intensity of the compensation element of the magnetic coupling mechanism of the wireless charging system, a novel wireless charging system based on three-phase inverter and three-phase LCL/P compensation is developed in this paper. Firstly, the characteristics of traditional single-phase wireless charging system and three-phase wireless charging system are compared and analyzed through simulation. On this basis, the switching period average theoretical model of three-phase inverter is deduced, and the closed-loop control strategy of the circuit is proposed. The theory and simulation analysis show that compared with the wireless charging system with single-phase compensation structure, the voltage and current of the compensation element of the three-phase wireless charging system developed in this paper are 1/3-1/2 of the single-phase circuit with the same power level, and the magnetic induction intensity of the primary coil is less than 1/3 of the single-phase circuit with the same power level. Under the condition of the same load, the current borne by each switch tube of the three-phase inverter is equivalent to 2/3 of the current borne by the switch tube of the single-phase full bridge inverter, and the on voltage of the switch tube in the current path decreases by 1/3. The two-stage control system is simplified into a single-stage closed-loop control system, which improves the stability and reliability of the circuit. Finally, according to the above principle, a 2 kW wireless charging system prototype is built, and the transmission efficiency from DC power supply to load reaches 95%. Experiments show the effectiveness and correctness of the circuit structure and principle analysis described in this paper.
Keywords: wireless charging;magnetic induction intensity;resonant voltage;resonant current
2022, 48(8):86-93  收稿日期: 2022-04-26;收到修改稿日期: 2022-06-06
基金项目: 国家自然科学基金(62173126);国家级大学生创新创业训练计划项目(202111517017);河南省高校科技创新团队支持计划(21IRTSTHN017);河南省科技厅科技攻关项目(222102240054,212102210245, 212102210014);河南工程学院教育教学改革研究项目(2021JYYB007,2021JYYB014)
作者简介: 周成虎(1973-),男,河南息县人,副教授,硕士,研究方向为非接触供电技术
参考文献
[1] 王玉元, 廖杰, 杨红本, 等. 非车载充电机运行效率的测试及研究[J]. 中国测试, 2021, 47(2): 164-169
[2] 曾得志, 薛家祥. 半桥逆变型磁共振式无线充电系统建模与控制[J]. 中国测试, 2020, 46(2): 110-116+154
[3] 裴春兴, 李娜, 王远霏. 非接触式供电列车松耦合变压器的仿真研究[J]. 中国测试, 2020, 46(9): 74-81
[4] 吴理豪, 张波. 电动汽车静态无线充电技术研究综述(上篇)[J]. 电工技术学报, 2020, 35(6): 1153-1165
[5] 黄学良, 王维, 谭林林. 磁耦合谐振式无线电能传输技术研究动态与应用展望[J]. 电力系统自动化, 2017, 41(2): 2-14
[6] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(18): 2855-2869
[7] 张献, 王朝晖, 魏斌, 等. 电动汽车无线充电系统中电屏蔽对空间磁场的影响分析[J]. 电工技术学报, 2019, 34(8): 1580-1588
[8] 高金峰, 余亚, 张旭辉, 等. 混沌调制技术降低无线充电系统EMI水平研究[J]. 郑州大学学报(工学版), 2016, 37(5): 62-66
[9] SONG C, KIM H, KIM Y, et al. EMI reduction methods in wireless power transfer system for drone electrical charger using tightly coupled three-phase resonant magnetic field[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 6839-6849
[10] LEE S, KIM D H, CHO Y, et al. Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless high power transfer system[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4356-4367
[11] 蔡家富, 刘桂雄. 动力锂电池模组多工位多电性能参数测试调度方法研究[J]. 中国测试, 2022, 48(1): 9-13
[12] 周豪, 姚钢, 赵子玉, 等. 基于LCL谐振型感应耦合电能传输系统[J]. 中国电机工程学报, 2013, 33(33): 9-16
[13] 赵争鸣, 刘方, 陈凯楠. 电动汽车无线充电技术研究综述[J]. 电工技术学报, 2016, 31(20): 30-40
[14] 翟渊, 孙跃, 苏玉刚, 等. 具有恒压特性的磁共振模式无线供电系统[J]. 电工技术学报, 2014, 29(9): 12-16
[15] 范兴明, 莫小勇, 张鑫. 无线电能传输技术的研究现状与应用[J]. 中国电机工程学报, 2015, 35(10): 2584-2600
[16] 徐德鸿. 电力电子系统建模及控制[M]. 北京: 机械工业出版社. 2005: 129-130, 152-155, 187-189.
[17] 周成虎, 周诗洁, 袁勋, 等. 三相DC/DC非接触供电电路设计[J]. 电力电子技术, 2022, 56(2): 8-11
[18] 罗欢. 脉冲序列控制Boost功率因数校正变换器研究[D]. 成都: 西南交通大学, 2020.
[19] 黄全振, 郭新军, 张洋, 等. 应用于级联多电平变流器的非均匀载波移相方法研究[J]. 中国测试, 2021, 47(8): 89-95