您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>煤炭元素分析仪中高灵敏度热导检测器的研究

煤炭元素分析仪中高灵敏度热导检测器的研究

1081    2022-11-18

免费

全文售价

作者:胡彪1, 郭志明2, 徐开群3, 谭中柱1, 何帅1

作者单位:1. 湖南省计量检测研究院,湖南 长沙 410014;
2. 湖南大学,湖南 长沙 410082;
3. 长沙开元仪器有限公司,湖南 长沙 410100


关键词:热导检测器;灵敏度;热平衡;检出限


摘要:

根据热导检测器的工作原理,分析影响其灵敏度的主要因素,并建立检测器的热平衡模型,可指导优化其性能设计。通过采用四壁直通式流通结构,选用10 kΩ NTC热敏电阻作为热敏元件,设计稳定的恒流电源、高精度控温电路和信号处理电路,研制出高灵敏度的煤炭元素分析仪用热导检测器。经测试,检测器基线噪声为1.5 μV,30 min内的基线漂移为8 μV,灵敏度为12288 mV·mL/mg,碳元素检出限为28.4 μg/g,氢元素检出限为28.8 μg/g,氮元素检出限为11.3 μg/g,满足高通量煤炭元素分析仪多组分联测需求。



Research on high sensitivity thermal conductivity detector in coal elemental analyzer
HU Biao1, GUO Zhiming2, XU Kaiqun3, TAN Zhongzhu1, HE Shuai1
1. Hunan Institute of Metrology and Test, Changsha 410014, China;
2. Hunan University, Changsha 410082, China;
3. Kaiyuan Instruments, Changsha 410100, China
Abstract: According to the working principle of the thermal conductivity detector, the main factors affecting the sensitivity of the thermal conductivity detector are analyzed, and a thermal balance model to describe the performance of the thermal conductivity cell is established, which can guide the optimization of its performance design. By adopting a four-wall straight-through flow structure, selecting a 10 kΩ NTC thermistor as the thermal element, designing a stable constant current power supply, a high-precision temperature control circuit and a signal processing circuit, developing a highly sensitive thermal conductivity detector used in the coal element analyzer. After testing, the detector baseline noise is 1.5 μV, the baseline drift within 30 minutes is 8 μV, the sensitivity is 12288 mV·mL/mg, and the detection limit of carbon is 28.4 μg/g, the detection limit of hydrogen is 28.8 μg/g, the detection limit of nitrogen is 11.3 μg/g, which meets the multi-component combined measurement requirements of high-throughput coal element analyzers.
Keywords: thermal conductivity detector;sensitivity;thermal balance;detection limit
2022, 48(11):120-125,137  收稿日期: 2021-08-18;收到修改稿日期: 2021-11-09
基金项目: 国家重点研发计划(2018YFF01014005);湖南省市场监管局科技项目(2021KJJH64)
作者简介: 胡彪(1983-),男,湖南宁乡市人,高级工程师,主要从事能源分析仪和热工计量技术研究
参考文献
[1] 刘福国, 刘景龙, 张绪辉, 等. 基于高斯过程的煤元素分析全成分含量预测研究[J]. 中国测试, 2020, 47(8): 6
[2] 井德刚, 赵桂军. 煤中元素分析经典法与元素分析仪法的优缺点探析[J]. 煤质技术, 2016(4): 35-37
[3] CRISTIAN B, MARIA C L, SILVIA S, et al. Determination of carbon monoxide in tuna by gas chromatography with micro-thermal conductivity detector[J]. Journal of Chromatographic Science, 2008(5): 392-394
[4] WU Y E, CHEN K, CHEN C W, et al. Fabrication and characterization of thermal conductivity detectors (TCDs) of different flow channel and heater designs[J]. Sensors & Actuators A Physical, 2002, 100(1): 37-45
[5] 张敏刚, 胡君杰, 熊可, 等. 微型热导检测器的研究进展[J]. 中国测试, 2020, 46(8): 1-8
[6] 毛秀芬, 靳斌, 苏垒. 供气相色谱仪使用的热导检测器的设计与实现[J]. 色谱, 2011, 29(8): 781-785
[7] RESTON R R, KOLESAR E S J. Silicon micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. I. Design, fabrication, and integration of the gas chromatography system[J]. Journal of Microelectromechanical Systems, 1994, 3(4): 134-146
[8] KOLESAR J, EDWARD S, et al. Review and summary of silicon micromachined gas chromatography system [J]. IEEE Transactions on Components Packaging & Manufacturing Technology Part B, 1998.
[9] JR E, RESTON R R. Silicon micromachined gas chromatography system [C]. // Innovative Systems in Silicon, 1997. Proceedings. Second Annual IEEE International Conference on. IEEE, 1997.
[10] 苏垒. 气相色谱仪热导检测器的研究与设计[D]. 成都: 西华大学, 2012.
[11] 冉莹玲, 何芳. 提高热导检测器灵敏度的设计与研究[J]. 传感器世界, 2015, 21(1): 20-23
[12] 冉莹玲. 微型热导检测器的研究[D]. 成都: 西华大学, 2016.
[13] 王栋. 基于傅里叶定律对热传导的分析[J]. 科学技术创新, 2019(13): 45-46
[14] 中国计量科学研究院. 气相色谱仪检定规程: JJG 700—2016[S]. 北京: 中国质检出版社, 2016.
[15] 李玉武, 任立军, 王婧瑞, 等. 方法检出限三个评估方法标准解读与比较[J]. 中国无机分析化学, 2015, 5(3): 24-33
[16] 王艳洁, 那广水, 王震, 等. 检出限的涵义和计算方法[J]. 化学分析计量, 2012, 9(5): 85-88
[17] 谢琪, 刘庆, 李晗, 等. 关于“检出限”的确定与评述[J]. 中国测试, 2018, 44(S1): 45-47