您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>润滑油蒸发损失测定仪温度复合控制方法

润滑油蒸发损失测定仪温度复合控制方法

947    2023-01-12

免费

全文售价

作者:肖克1, 吴双双1, 柏文琦1, 林海军2, 叶源2

作者单位:1. 湖南省计量检测研究院,湖南 长沙 410014;
2. 湖南师范大学,湖南 长沙 410081


关键词:润滑油蒸发损失测定仪;Bang-Bang控制;模糊控制;PID控制


摘要:

针对润滑油蒸发损失测定仪电热炉系统温度的非线性、大滞后性以及难以建模等问题,以电热炉内部实测温度与目标控制温度之间偏差的绝对值|e|、温度阈值M1M2的大小为决策变量,设计一种粗大偏差采用Bang-Bang控制、中等偏差采用模糊控制、细小偏差采用PID控制的分段式复合温度控制方法,同时给出基于该方法的温度控制系统的软、硬件设计。实验结果表明:采用该文设计的复合温度控制方法,润滑油蒸发损失测定仪的电热炉温度能够在35 min内达到目标值245 ℃,且控制误差≤0.2 ℃,具有良好的动、静态性能和抗干扰能力。


A composite temperature control method for evaporation loss tester of lubricating oil
XIAO Ke1, WU Shuangshuang1, BAI Wenqi1, LIN Haijun2, YE Yuan2
1. Hunan Institute of Metrology and Test, Changsha 410014, China;
2. Hunan Normal University, Changsha 410081, China
Abstract: Aiming at the problems of nonlinearity, large lag and difficulty in modeling of electric furnace system temperature of lubricating oil evaporation loss tester, combined with the absolute value |e| of deviation between measured temperature and target control temperature in electric furnace, temperature threshold M1 and M2, a new method of using bang bang control for coarse deviation, fuzzy control for medium deviation is designed, and the subsection compound temperature control method of PID control is adopted for small deviation. The software and hardware design of the temperature control system based on this method are given. The experimental results show that, with the composite temperature control method designed in this paper, the electric furnace temperature of the lubricating oil evaporation loss tester can reach the target value of 245 ℃ within 35 minutes, and the control error is less than 0.2 ℃, which has good dynamic and static performance and anti-jamming capability.
Keywords: lubricating oil evaporation loss tester;Bang-Bang control;fuzzy control;PID control
2023, 49(1):155-160  收稿日期: 2021-08-17;收到修改稿日期: 2021-10-05
基金项目: 国家重点研发计划项目(2019YFF0216804);湖南省市场监督管理局科技计划项目(2020KJJH08);长沙市杰出创新青年培养计划(kq2009090)
作者简介: 肖克(1983-),男,湖南邵阳市人,高级工程师,硕士,研究方向为化工仪器仪表测量与控制
参考文献
[1] 关宇. 诺亚克法润滑油蒸发损失的测定影响因素分析[J]. 黑龙江科技信息, 2015(12): 41
[2] 周鑫, 周琦祥, 杨旭, 等. 电阻炉温度随动控制系统设计及应用[J]. 吉林化工学院学报, 2020, 37(7): 45-48
[3] CHIANG W M, LUO W J, WANG F J. Temperature control scheme using hot-gas bypass for a machine tool oil cooler[J]. Journal of Mechanical Science and Technology, 2018, 32(3): 1391-1396
[4] UMA S, CHIDAMBARAM M, RAO A S, et al. Enhanced control of integrating cascade processes with time delays using modified Smith predictor[J]. Chemical Engineering Science, 2010, 65(3): 1065-1075
[5] ZHANG W, RIEBER J M, GU D. Optimal dead-time compensator design for stable and integrating processes with time delay[J]. Journal of Process Control, 2007, 18(5): 449-457
[6] HERNANDEZ JS, FELIU V, RIVAS PR. State feedback temperature control based on a Smith predictor in a precalciner of a cement kiln[J]. IEEE Latin America Transactions, 2021, 19(1): 138-146
[7] 张智军. 基于Dahlin算法的温度控制器设计[J]. 自动化技术与应用, 2011, 30(6): 13-16
[8] 邓丽霞, 陈素霞, 黄全振, 等. 板式换热器模型构建及模糊PID控制方法[J]. 中国测试, 2017, 43(12): 109-112+123
[9] CASTILLO G F J, FELIU B V, RIVAS PR. Time domain tuning of fractional order controllers combined with a Smith predictor for automation of water distribution in irrigation main channel pools[J]. Asian Journal of Control, 2013, 15(3): 819-833
[10] MURESAN C I, DUTTA A, DULF E H, et al. Tuning algorithms for fractional order internal model controllers for time delay processes[J]. International Journal of Control, 2015, 89(3): 1-48
[11] BOUDJEHEM D, SEDRAOUI M, BOUDJEHEM B. A fractional model for robust fractional order Smith predictor[J]. Nonlinear Dynamics, 2013, 73(3): 1557-1563
[12] 李俊红, 杨马英, 穆秀春. 基于PLC的大时滞温度对象的动态矩阵控制[J]. 浙江工业大学学报, 2005(1): 58-61
[13] 张皓, 高瑜翔. 前馈反馈Smith预估模糊PID组合温度控制算法[J]. 中国测试, 2020, 46(11): 132-138+168
[14] 贺自名, 牛江川, 张静. 基于Smith变论域模糊自适应PID蒸发源温度控制[J]. 控制工程, 2021, 28(7): 1308-1314
[15] 凡占稳, 单琼飞, 尹承锟, 等. 基于单神经元PID的真空炉自适应温度控制[J]. 金属热处理, 2020, 45(12): 237-241