您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>微机械陀螺中永磁薄膜表面磁场分布仿真

微机械陀螺中永磁薄膜表面磁场分布仿真

133    2024-04-26

¥0.50

全文售价

作者:施江焕1, 马丹跃2, 吴琼3, 吴梓坚3, 黄腓力1, 陈杭武1, 吕沛1

作者单位:1. 宁波市计量测试研究院(宁波新材料检验检测中心),浙江 宁波 315040;
2. 北京航空航天大学大科学装置研究院,北京 100191;
3. 中国计量大学材料与化学学院,浙江 杭州 310018


关键词:表面磁场分布;薄膜阵列;磁场变化率


摘要:

基于隧道磁电阻效应的微机械陀螺中,磁场的产生和分布是决定器件性能的重要因素。该文以NdFeB永磁薄膜为磁场源,利用基于有限元法的Comsol Multiphysics软件对NdFeB永磁薄膜表面磁场进行系统分析,研究不同薄膜厚度下的薄膜表面磁场分布的均匀性及隧道磁阻敏感轴方向磁场分量的变化率。研究发现,随着薄膜厚度的增加,薄膜表面磁场和磁场变化率也在变大,薄膜厚度为20 µm时,薄膜所产生的磁场变化率可达0.43 mT/µm。考虑到薄膜阵列化可以有效抑制薄膜过厚所导致的薄膜与基底附着力变弱的问题,该文通过改变设计参数,研究NdFeB永磁厚膜一维阵列的表面磁场分布。发现阵列单元的厚度和宽度增加时,阵列的磁场强度和磁场变化率也会变大,而间距增加会导致薄膜阵列的表面磁场和磁场变化率降低。


Surface magnetic field distribution simulation of permanent magnet thin film in micromechanical gyro
SHI Jianghuan1, MA Danyue2, WU Qiong3, WU Zijian3, HUANG Feili1, CHEN Hangwu1, Lü Pei1
1. Ningbo Institute of Measurement and Testing (Ningbo Inspection and Testing Center for New Materials), Ningbo 315040, China;
2. Research Institute of Large Scientific Facility, Beihang University, Beijing 100191, China;
3. College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
Abstract: In the micromachined gyroscope based on the tunneling magnetoresistance effect, the generation and distribution of magnetic field is an important factor to determine the performance of the device. In this paper, NdFeB permanent magnet film is used as the magnetic field source, and the surface magnetic field of NdFeB permanent magnet film is systematically analyzed by Comsol Multiphysics software based on finite element method. The uniformity of the magnetic field distribution on the surface of the film under different film thicknesses and the change rate of the magnetic field component in the direction of the tunnel reluctance sensitive axis are studied. It is found that with the increase of film thickness, the surface magnetic field and magnetic field change rate of the film also increase. When the film thickness is 20 μm, the magnetic field change rate generated by the film can reach 0.43 mT/μm. Considering that the film array can effectively suppress the weakening of the adhesion between the film and the substrate caused by the excessive thickness of the film, the surface magnetic field distribution of the one-dimensional array of NdFeB permanent magnet thick film is studied by changing the design parameters. It is found that when the thickness and width of the array unit increase, the magnetic field intensity and magnetic field change rate of the array will also increase, while the increase of the spacing will lead to the decrease of the surface magnetic field and magnetic field change rate of the film array.
Keywords: surface magnetic field distribution;thin film array;magnetic field change rate
2024, 50(4):16-23  收稿日期: 2023-06-07;收到修改稿日期: 2023-07-21
基金项目: 浙江省市场监督管理局科技计划项目(ZC2023060)
作者简介: 施江焕(1984-),男,浙江温岭市人,高级工程师,硕士,主要从事磁性材料检测方面的研究工作。
参考文献
[1] LI C, YANG B, GUO X, et al. Design, analysis and simulation of a MEMS-based gyroscope with differential tunneling magnetoresistance sensing structure[J]. Sensors, 2020, 20(17): 4919.
[2] PASSARO V M N, ANTONELLO C, LORENZO V, et al. Gyroscope technology and applications: A review in the industrial perspective[J]. Sensors, 2017, 17(10): 2284.
[3] LIU K, ZHANG W P, CHEN W Y, et al. The development of micro-gyroscope technology[J]. Journal of Micromechanics and Microengineering, 2009, 19(11): 113001-113029.
[4] YANG B, WANG B L, YAN H Y, et al. Design of a micromachined Z-axis tunneling magnetoresistive accelerometer with electrostatic force feedback[J]. Micromachines, 2019, 10(2): 158.
[5] BOSE S, RAYCHOWDHURY A, JATOLIA M, et al. Design of PID controller for ultra-sensitive Nano-g resolution MEMS tunneling accelerometer[C]//2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), 2014.
[6] 李文望, 王凌云. 微机械隧道陀螺的振动特性测试[J]. 中国测试, 2011, 37(1): 11-13.
LI W W, WANG L Y. Vibration measuring methods of micro-machined tunneling gyroscope[J]. China Measurement & Test, 2011, 37(1): 11-13.
[7] 刘震, 王雪梅, 倪文波. 基于MEMS传感器的高精度姿态角测量研究[J]. 中国测试, 2017, 43(2): 6-12.
LIU Z, WANG X M, NI W B. Research on attitude angle measurement with high precision based on MEMS sensors[J]. China Measurement & Test, 2017, 43(2): 6-12.
[8] 余博嵩, 何姣, 曹晓钟. 基于MEMS的海洋漂流浮标运动姿态测量系统设计[J]. 电子测量技术, 2019, 42(10): 99-104.
YU B S, HE J, CAO X Z. Measurement system of ocean drifting buoy motion attitude based on MEMS[J]. Electronic Measurement Technology, 2019, 42(10): 99-104.
[9] PHAN K L, MAURITZ A, HOMBURG F G A. A novel elastomer-based magnetoresistive accelerometer[J]. Sensors and Actuators A:Physical, 2008, 145: 109-115.
[10] YANG B, WANG B, GAO X. Research on a small tunnel magnetoresistive accelerometer based on 3D printing[J]. Microsystem Technologies, 2019, 25: 2649-2660.
[11] 杜川. MEMS永磁薄膜磁场的设计与仿真[J]. 电子器件, 2018, 41(2): 286-291.
DU C. The design and simulation of MEMS permanent magnetic field[J]. Chinese Journal of Electron Devices, 2018, 41(2): 286-291.
[12] 郝建华, 郑全普, 胡然, 等. 基于GMI效应的磁传感器研究与发展现状[J]. 国外电子测量技术, 2011, 30(4): 20-26.
HAO J H, ZHENG Q P, HU R, et al. Research and development of magnetic sensors based on GMI[J]. Foreign Electronic Measurement Technology, 2011, 30(4): 20-26.
[13] HOPKINS R, MIOLA J, SAWYER W, et al. The silicon oscillating accelerometer: A high-performance MEMS accelerometer for precision navigation and strategic guidance applications[C]//Proceedings of the 2005 National Technical Meeting of the Institute of Navigation, 2005: 970-979.
[14] 苟晓凡, 杨勇, 郑晓静. 矩形永磁体磁场分布的解析表达式[J]. 应用数学和力学, 2004, 25(3): 271-278.
GOU X F, YANG Y, ZHENG X J. Analytic expression of magnetic field distribution of rectangular permanent magnets[J]. Applied Mathematics and Mechanics, 2004, 25(3): 271-278.
[15] 吴琦. MEMS用硅基永磁薄膜阵列设计与制备研究[D]. 成都: 电子科技大学, 2003.
[16] CHARRIER D S H. Micronewton electromagnetic thruster[J]. Applied Physics Letters, 2012, 101(3): 034104.
[17] ZHU L, JIN F, ZHU Y Q, et al. Giant magneto-impedance (GMI) effect in single-layer soft magnetic film under stress[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(12): 8195-8200.