您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>多相计量撬现场参数整定及单井计量测试

多相计量撬现场参数整定及单井计量测试

124    2024-04-26

¥0.50

全文售价

作者:吴奇霖1, 何云腾2, 李雁飞1, 吴辰3, 朱沫3, 李东晖2

作者单位:1. 中海石油(中国)有限公司深圳分公司,广东 深圳 518067;
2. 中国科学院力学研究所,北京 100190;
3. 中海油能源发展装备技术有限公司深圳分公司,广东 深圳 518067


关键词:计量学;单井计量;现场采出液分析;密度整定;石油平台


摘要:

单井多相计量一直是油田迫切需要突破的问题,科氏力流量计以其较高的质量流量精度,实时提供含水率而广受欢迎。但受限于现场条件,作为含水率及体积流量换算的密度参数并不准确或无法提供。基于此阐述一种在油田现场对单井采出液就地进行油水分离及密度检测的方法。以现场实验获取的单井采出液原油,地层水水密度值作为基于科氏力多相计量撬的参数,进行所采样单井的计量测试实验,与平台现有高精度流量计及取样化验含水率数据比对,相对误差在±5%以内。


Field parameter setting of multiphase metering skid and single well metering test
WU Qilin1, HE Yunteng2, LI Yanfei1, WU Chen3, ZHU Mo3, LI Donghui2
1. Shenzhen Branch of CNOOC (China) Co., Ltd., Shenzhen 518067, China;
2. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
3. Shenzhen Branch of CNOOC Energy Development Equipment Technology Co., Ltd., Shenzhen 518067, China
Abstract: Single-well multiphase metering has always been an urgent problem in oilfields. Coriolis flowmeters are widely popular for their high mass flow accuracy and real-time water cut. However, due to site conditions, the density parameters used as water content and volume flow conversion are not accurate or available. Based on this, a method for on-site oil-water separation and density detection of single-well produced fluid is expounded. Using the single well produced liquid crude oil and formation water density values obtained from field experiments as the parameters of the multiphase metering skid based on Coriolis force, the measurement test experiment of the sampled single well is carried out, which is consistent with the existing high-precision flowmeter and sampling test of the platform. Comparison of moisture content data, relative error within ±5%.
Keywords: metrology;single well metering;field produced fluid analysis;density setting;oil platform
2024, 50(4):31-37,82  收稿日期: 2022-03-07;收到修改稿日期: 2022-07-15
基金项目: 中国科学院战略性先导科技专项(B)类 (XDB22030201);中国海洋石油总公司十三五重大科技项目联合资助 (CNOOC-KJ 135 ZDXM 22 LTD 03 SZ 2016)
作者简介: 吴奇霖(1981-),男,吉林梅河口市人,高级工程师,主要从事深水气田生产和运行方面的工作。
参考文献
[1] (英) ROGER C B. 流量测量手册: 工业设计、工作原理, 性能和应用[M]. 北京: 清华大学出版社, 2020: 359-373, 395-425.
ROGER C B.Flow measurement manual: industrial design, working principles, performance, and applications [M].Beijing: Tsinghua University Press, 2020: 359-373, 395-425.
[2] 刘培林, 刘飞龙. 深水油气田水下生产系统双管输送流动安全研究——以流花21-2油田为例[J]. 中国海上油气, 2021, 33(4): 156-163
LIU P L, LIU F L. A study on the flow safety of double pipe transportation in underwater production systems of deepwater oil and gas fields - taking liuhua 21-2 oilfield as an example[J]. China Offshore Oil and Gas, 2021, 33(4): 156-163
[3] 胡冬, 郝蕴, 王春升, 等. 南海无人井口平台工艺方案研究[J]. 石油和化工设备, 2021, 24(1): 35-37
HU D, HAO Y, WANG C S, et al. Research on the process scheme of unmanned wellhead platform in the South China Sea[J]. Petro-Chemical Equipment, 2021, 24(1): 35-37
[4] 张宁, 王跃曾. 浅谈十种深水和超深水油田开发生产解决方案[J]. 中国设备工程, 2021(12): 199-201
ZHANG N, WANG Y Z. A brief discussion on ten solutions for deepwater and ultra deepwater oilfield development and production[J]. China Plant Engineering, 2021(12): 199-201
[5] 朱迎辉, 陈维华, 廖意, 等. 国外深水油田高效开发关键策略与技术[J]. 中外能源, 2017, 22(6): 50-54
ZHU Y H, CHEN W H, LIAO Y, et al. Key strategies and technologies for efficient development of deepwater oilfield abroad[J]. Sino-Global Energy, 2017, 22(6): 50-54
[6] 万广峰, 刘成彬, 张洁, 等. 中油国际巴西深水油气项目提质增效创新与实践[J]. 国际石油经济, 2021, 29(3): 96-101
WAN G F, LIU C B, ZHANG J, et al. Innovation and practice in improving quality and efficiency of China National Petroleum Corporation's Brazil deepwater oil and gas project[J]. International Petroleum Economics, 2021, 29(3): 96-101
[7] 张颖, 李慧明, 郭嘉宁. 巴西深水油田开发工程降本增效措施[J]. 化工管理, 2021(31): 183-184
ZHANG Y, LI H M, GUO J N. Cost reduction and efficiency improvement measures for Brazil's deepwater oilfield development projects[J]. Chemical Enterprise Management, 2021(31): 183-184
[8] 杜馨, 孙晓荣, 刘翠玲, 等. 原油含水率的红外光谱快速检测技术[J]. 中国测试, 2020, 46(1): 50-55
DU X, SUN X R, LIU C L, et al. Infrared spectroscopy for rapid detection of moisture content in crude oil[J]. China Measurement & Test, 2020, 46(1): 50-55
[9] 贾惠芹, 戴阳. 螺旋天线原油含水率测量仪的误差分析与校准[J]. 中国测试, 2021, 47(3): 117-121
JIA H Q, DAI Y. Error analysis and calibration of crude oil water cut measurement instrument with spiral antenna[J]. China Measurement & Test, 2021, 47(3): 117-121
[10] 青美伊, 梁华庆, 袁月. 剪切条件下油水乳状液含水率测量装置的设计[J]. 中国测试, 2019, 45(1): 100-106
QING M Y, LIANG H Q, YUAN Y. Design of water-content testing device for oil-water emulsions under shear conditions[J]. China Measurement & Test, 2019, 45(1): 100-106
[11] ELLIOTT A J, FALCONE G, PUTTEN D V, et al. Investigating reproducibility in multiphase flow metrology: results from an intercomparison of laboratories[J].Flow Measurement and Instrumentation, 2021, 79: 101951.
[12] O’NEILL K T, BRANCATO L, STANWIX P L, et al. Two-phase oil/water flow measurement using an earth’s field nuclear magnetic resonance flow meter [J]. Chemical Engineering Science, 2019, (202): 222-237.
[13] SHI X W, TAN C, DONG F, et al. Flow rate measurement of oil-gas-water wavy flow through a combined electrical and ultrasonic sensor [J]. Chemical Engineering Journal, 2022, 427: 131982.
[14] 陈基亮, 孔德明, 郝虎, 等. 石油生产多组分监测光纤电导一体式传感器研究[J]. 仪器仪表学报, 2021, 42(6): 261-271
CHEN J L, KONG D M, HAO H, et al. Research on fiber optic conductivity integrated sensor for multi component monitoring in petroleum production[J]. Chinese Journal of Scientific Instrument, 2021, 42(6): 261-271
[15] FADAEI M, AMELI F, HASHEMABADI S H. Investigation on Different Scenarios of Two-phase Flow Measurement Using Orifice and Coriolis Flow Meters: Experimental and Modeling Approaches[J]. Measurement, 2021, 175: 108986
[16] 陈艳, 王军, 刘畅. 自标定多井在线计量方案[J]. 化工自动化及仪表, 2021, 48(6): 562-565
CHEN Y, WANG J, LIU C. Self calibration multi well online measurement scheme[J]. Control and Instruments in Chemical Industry, 2021, 48(6): 562-565
[17] 刘帅, 郝永顺. 某平台测试分离器与GLCC多相流量计使用效果对比分析[J]. 化工管理, 2021(15): 175-177
LIU S, HAO Y S. Comparative analysis of the effectiveness of testing separators and GLCC multiphase flow meters on a certain platform[J]. Chemical Enterprise Management, 2021(15): 175-177
[18] 余海, 贺公安. 多相流计量装置在油井计量中的应用[J]. 化工管理, 2021(24): 189-190
YU H, HE G A. The application of multiphase flow metering devices in oil well metering[J]. Chemical Enterprise Management, 2021(24): 189-190
[19] MERIBOUT M, AZZI A, GHENDOUR N, et al. Multiphase flow meters targeting oil & gas industries[J], Measurement, 2020, 165: 108111.
[20] 张宁, 孙钦, 侯广信, 等. 国产水下多相流量计第三方认证[J]. 中国海洋平台, 2021, 36(5): 96-100
ZHANG N, SUN Q, HOU G X, et al. Third party certification of domestic underwater multiphase flow meters[J]. China Offshore Platform, 2021, 36(5): 96-100
[21] 黄浩清. 西江24-3-A20ERW大位移井钻井液技术[J]. 钻井液与完井液, 2002(1): 31-34
HUANG H Q. Drilling fluid technology for Xijiang 24-3-A20ERW extended reach well[J]. Drilling Fluid and Completion Fluid, 2002(1): 31-34
[22] 何云腾, 吴奇霖, 陈三君, 等. 定容管活塞式油气水多相流量计[J]. 油气井测试, 2019, 28(4): 45-50
HE Y T, WU Q L, CHEN S J, et al. Fixed volume tube piston type oil gas water multiphase flow meter[J]. Well Testing, 2019, 28(4): 45-50
[23] 徐浩然, 徐科军, 张伦, 等. 科氏质量流量计测量含气液体流量关键技术综述[J]. 计量学报, 2021, 42(4): 483-494
XU H R, XU K J, ZHANG L, et al. Overview of key technologies for measuring gas liquid flow with coriolis mass flowmeters[J]. Acta Metrologica Sinica, 2021, 42(4): 483-494
[24] 蔡武昌, 应启戛. 新型流量检测仪表[M]. 北京: 化学工业出版社, 2006.
CAI W C, YING Q J.New flow detection instruments [M].Beijing: Chemical Industry Press, 2006.
[25] 杨辉跃, 涂亚庆, 毛育文. 科氏质量流量计振动幅值的仿人智能控制方法[J]. 仪器仪表学报, 2019, 40(5): 118-123
YANG H Y, TU Y Q, MAO Y W. A humanoid intelligent control method for vibration amplitude of coriolis mass flowmeter[J]. Chinese Journal of Scientific Instrument, 2019, 40(5): 118-123
[26] 赵敏涛. 科氏质量流量计的应用研究[D]. 西安: 西安石油大学, 2013.
ZHAO M T. Research on the application of Coriolis mass flowmeter [D].Xi'an: Xi'an Shiyou University, 2013.
[27] 陶波波, 徐科军, 侯其立, 等. 变传感器设定值的科氏质量流量管控制方法[J]. 仪器仪表学报, 2015, 36(3): 712-720
TAO B B, XU K J, HOU Q L, et al. Control method for Coriolis mass flow tube with variable sensor settings[J]. Chinese Journal of Scientific Instrument, 2015, 36(3): 712-720
[28] 王永强, 张凯权, 汪建伟, 等. 使用科式力质量流量计的多相流量计的研制[J]. 油气井测试, 2021, 30(3): 20-24
WANG Y Q, ZHANG K Q, WANG J W, et al. Development of multiphase flow meters using Coriolis force mass flow meters[J]. Well Testing, 2021, 30(3): 20-24
[29] 尹晶晶. 对原油密度化验影响因素的分析[J]. 化工管理, 2021(26): 79-80
YIN J J. Analysis of influencing factors on crude oil density assay[J]. Chemical Enterprise Management, 2021(26): 79-80
[30] 何云腾, 张健, 李华, 等. 比较振荡管法和比重瓶法测定15~80℃原油视密度换算标准密度的研究[J]. 计量学报, 2022, 43(5): 629-635
HE Y T, ZHANG J, LI H, et al. A study on the conversion of apparent density to standard density of crude oil at 15~80 ℃ by comparing the oscillation tube method and the pyknometer method[J]. Acta Metrologica Sinica, 2022, 43(5): 629-635
[31] 张武辇, 张天祥. 一口大位移井开发一个油田——创造多项世界纪录的中国南海西江24-3-A14大位移井钻井新技术[J]. 中国海上油气(工程), 1998(3): 9-14
ZHANG W N, ZHANG T X. Developing an oilfield with a large displacement well - a new drilling technology for the Xijiang 24-3-A14 large displacement well in the South China Sea, creating multiple world records[J]. China Offshore Oil and Gas (Engineering), 1998(3): 9-14
[32] 周湄生. 最新温标纯水密度表[J]. 计量技术, 2000(3): 40-42
ZHOU M S. The latest temperature standard pure water density table[J]. Measurement Technique, 2000(3): 40-42
[33] 何云腾, 张健, 李华, 等. 利用振荡管密度计检测循环流动附温油水混合物密度[J]. 实验技术与管理, 2022, 39(5): 29-34
HE Y T, ZHANG J, LI H, et al. Using an oscillating tube densitometer to detect the density of circulating flow with attached temperature oil-water mixture[J]. Experimental Technology and Management, 2022, 39(5): 29-34
[34] 原油中水和沉淀物的测定 离心法:GB/T 6533—2012 [S]. 北京: 中国标准出版社, 2013.
Determination of water and sediment in crude oil by centrifugation method: GB/T 6533-2012 [S].Beijing: Standard Press of China , 2013.
[35] 原油水含量的测定 蒸馏法:GB/T 8929—2006 [S]. 北京: 中国标准出版社, 2006.
Determination of water content in crude oil by distillation method: GB/T 8929-2006 [S].Beijing:  Standards Press of China, 2006.