您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>透水沥青混合料PAC-16级配优化

透水沥青混合料PAC-16级配优化

116    2024-04-26

¥0.50

全文售价

作者:陆幸1, 陈太福2, 陈宗碧3, 刘文昶4, 林宏伟4

作者单位:1. 宁波市轨道交通集团有限公司,浙江 宁波 315000;
2. 广州市高速公路有限公司,广东 广州 511466;
3. 文山州公路工程质量监督站,云南 文山 663000;
4. 同济大学交通运输工程学院,上海 201804


关键词:透水路面;透水沥青混合料;三轴试验;级配优化;高温性能


摘要:

为改善透水沥青混合料的高温抗剪切性能,对透水混合料PAC-16三轴剪切试验进行模拟,构建虚拟三轴剪切试验数值模型,并对其模拟准确性进行验证。基于此,结合数值仿真和室内试验对PAC-16级配进行优化。结果表明:虚拟试验方法所测的不同围压水平峰值应力、内摩擦角及黏聚力均与室内试验实测结果的误差不超过5%,且试验规律与实际相符;推荐粗集料最佳用量为4.75~9.5 mm: 9.5~13.2 mm: 13.2~16 mm: 16~19 mm= 10: 15: 12: 3、细集料最佳级配取i= 0.75对应的级配、粗细集料用量比为80: 20,并确定0.075 mm,4.75 mm及16 mm关键筛孔通过率,提出PAC-16优化级配。优化级配的高温性能至少提升10%,整体路用性能更加出色。


Optimization gradation of permeable asphalt mixture PAC-16
LU Xing1, CHEN Taifu2, CHEN Zongbi3, LIU Wenchang4, LIN Hongwei4
1. Ningbo Rail Transit Group Co., Ltd., Ningbo 315000, China;
2. Guangzhou Expressway Co., Ltd.,Guangzhou 511466, China;
3. Wenshan Prefecture Highway Engineering Quality Supervision Station, Wenshan 663000, China;
4. School of Transportation Engineering, Tongji University, Shanghai 201804, China
Abstract: In order to improve the high-temperature performance of the permeable asphalt mixture, this study simulated three-axis shear test of PAC-16 mixes, built a numeric model of the virtual shear test, and verify its simulation accuracy. Based on this, the mineral gradation of PAC-16 was optimized in combination with simulation and interior trials. Results showed that the peak stress, internal friction angle and adhesion of different enclosure levels measured by the virtual test method were not more than 5% of the error of the actual test results, and the test rules are in line with the actuality. The recommended optimal dosage of coarse aggregate of 4.75-9.5 mm: 9.5-13.2 mm: 13.2-16 mm: 16-19 mm is 10:15:12:3, the optimal grading of fine aggregate was taken as the gradation corresponding to i=0.75, and the ratio of coarse aggregates to fine aggregates was 80:20. The key sieve pass rates of 0.075 mm, 4.75 mm, and 16 mm are determined and the optimized gradation of PAC-16 was proposed. It has been shown that the high-temperature performance of the optimized gradation was improved by at least 10%, and the overall road performances were even better.
Keywords: permeable pavement;permeable asphalt mixture;triaxial test;gradation optimization;high temperature performance
2024, 50(4):60-67  收稿日期: 2023-05-06;收到修改稿日期: 2023-09-06
基金项目: 宁波市公益类科技计划(2019C50019);云南省交通运输厅科技创新示范项目(云交科教[2019]14号)
作者简介: 陆幸(1986-),男,浙江宁波市人,高级工程师,硕士,研究方向为交通运输工程。
参考文献
[1] 张硕. 混掺纤维透水沥青混合料路用性能试验研究 [J/OL]. 中国测试: 1-6 [2023-06-08]. http://kns.cnki.net/kcms/detail/51.1714.TB.20221002.1411.002.html.
ZHANG S. Experimental study on pavement performance of porous asphalt mixture mixed with fiber[J/OL]. China Measurement & Test: 1-6 [2023-06-08]. http://kns.cnki.net/kcms/detail/51.1714.TB.20221002.1411.002.html.
[2] 肖军, 尹强, 姜克锦, 等. 复掺纤维改善高黏弹改性透水沥青混合料性能试验研究[J]. 公路, 2022, 67(8): 380-385.
[3] 李锋, 张绍泉, 马庆伟, 等. 高黏复合改性橡胶沥青在透水沥青路面中的应用[J]. 筑路机械与施工机械化, 2020, 37(3): 9-14.
LI F, ZHANG S Q, MA Q W, et al. Application of high-viscosity composite modified rubberized asphalt in permeable asphalt pavement[J]. Road Machinery & Construction Mechanization, 2020, 37(3): 9-14.
[4] 饶奇, 刘明. 基于粗集料粗度下透水沥青混合料PAC-13级配优化研究[J]. 交通节能与环保, 2019, 15(6): 91-94.
RAO Q, LIU M. Study on PAC-13 grading optimization of permeable asphalt mixture based on coarse aggregate roughness[J]. Transport Energy Conservation & Environmental Protection, 2019, 15(6): 91-94.
[5] QIAN Z D, REN H, WEI Y. Effect of aggregate gradation and morphology on porous asphalt mixture performance[J]. Journal of Materials in Civil Engineering, 2021, 33(5): 04021055.
[6] KUSUMAWARDANI D M, WONG Y D. Effect of aggregate shape properties on performance of porous asphalt mixture[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021208.
[7] MANSOUR T N, PUTMAN B J. Influence of aggregate gradation on the performance properties of porous asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2013, 25(2): 281-288.
[8] MA X, WANG H, ZHOU P. Novel gradation design of porous asphalt concrete with balanced functional and structural performances[J]. Applied Sciences, 2020, 10(20): 7019.
[9] 邱彦章, 翟英博, 耿洪杨, 等. 道路内部温湿度数据采集系统[J]. 电子测量技术, 2019, 42(4): 14-18.
QIU Y Z, ZHAI Y B, GENG H Y, et al. Road internal temperature and humidity data acquisition system[J]. Electronic Measurement Technology, 2019, 42(4): 14-18.
[10] 吕珮毅, 张允航, 张曌. 破片形状、着靶姿态对侵彻多层靶影响的数据模拟研究[J]. 国外电子测量技术, 2021, 40(1): 27-31.
LÜ P Y, ZHANG Y H, ZHANG Z. Numerical simulation research on the influence of fragment shape and posture on penetrating multi-layer target[J]. Foreign Electronic Measurement Technology, 2021, 40(1): 27-31.
[11] 蒋玮. 透水沥青路面材料和结构的组成设计与功能评价[D]. 西安: 长安大学, 2011.
JIANG W. Composition design and function evaluation for materials and structures of permeable asphalt pavement[D]. Xi'an: Chang'an University, 2011.
[12] KUSUMAWARDANI D M, WONG Y D. Evaluation of aggregate gradation on aggregate packing in porous asphalt mixture (PAM) by 3D numerical modelling and laboratory measurements[J]. Construction and Building Materials, 2020, 246: 118414.
[13] REN J, XU Y, HUANG J, et al. Gradation optimization and strength mechanism of aggregate structure considering macroscopic and mesoscopic aggregate mechanical behaviour in porous asphalt mixture[J]. Construction and Building materials, 2021, 300: 124262.
[14] 易勇, 张韶华, 蒋应军. 数值试验中平行粘结半径乘数的确定及验证[J]. 中国科技论文, 2020, 15(1): 81-88.
YI Y, ZHANG S H, JIANG Y J. Determination and verification of parallel bonding radius multiplier in numerical test[J]. China Sciencepaper, 2020, 15(1): 81-88.
[15] 朱洪洲, 唐伯明, 何兆益, 等. 基于综合性能的沥青混合料组成结构优化[J]. 公路交通科技, 2007, 24(10): 1-5.
ZHU H Z, TANG B M, HE Z Y, et al. Research on asphalt mixture constituent structure optimization based on comprehensive performance[J]. Journal of Highway and Transportation Research and Development, 2007, 24(10): 1-5.