您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>一种复合型声电换能装置的优化设计

一种复合型声电换能装置的优化设计

127    2024-04-26

¥0.50

全文售价

作者:陈创1, 李泽钦2, 吕海峰1, 张晏晴1, 马智宇1

作者单位:1. 中北大学机械工程学院,山西 太原 030051;
2. 河北工业大学理学院,天津 300401


关键词:俘获声能;流体能量;复合型换能器;正交实验;优化技术


摘要:

为了俘获环境中广泛存在的声能,提出一种双效应耦合作用的声电换能装置,该结构可在声电转换的同时捕获空气中的流体能量。为提高该装置的声电转化效率,对其进行优化设计。通过研究压电片不同连接方式对发电性能的影响规律,确定不同条件下系统的最优连接方式。采用正交实验法确定系统的最优组合方式,实验结果表明:在电阻大小2 MΩ、PZT材料的串联个数28个、PZT材料的总数56个、声源与换能器间的距离240 mm的组合方式下,系统输出功率最大。以最优组合设计实验,设置声压级为110 dB,噪声频率在247 Hz,此时测得负载输出电压17.54 V,输出功率307.65 μW,平均能量密度13.26 mW/m3。优化后的结构可作为微小型用电器的供电电源,在新能量领域有较好的应用前景。


Optimal design of a composite acoustic-electrical transducer
CHEN Chuang1, LI Zeqin2, Lü Haifeng1, ZHANG Yanqing1, MA Zhiyu1
1. School of Mechanical Engineering, North University of China, Taiyuan 030051, China;
2. School of Science,Hebei University of Technology, Tianjin 300401, China
Abstract: In order to capture the sound energy widely present in the environment, a double-effect coupling acoustic-electric transducer is proposed, which captures the fluid energy in the air while the acoustic-electrical conversion is proposed, which provides a new method for energy capture. In order to improve the acousto-electric conversion efficiency of this device, its design needs to be improved. The effects of varying attachment methods of the PZT piece on the power generation performance has been studied, and the optimal connection method of the system in different occasions was selected. The orthogonal analysis method was used to determine the optimal combination of the system, and the experimental results showed that the system output power was maximum under the combination of the resistance size of 2 MΩ, the number of PZT materials in series of 28, the total number of PZT materials of 56, and the distance between the sound source and the transducer of 240 mm. With the optimal combination design tests, the sound pressure level is set to 110 dB, the noise frequency is 247 Hz, and the voltage across the resistor is 17.54 V, the output power is 307.65 μW, and the average energy density is 13.26 mW/m3. The Optimized structure can be used as a power supply for micro and small appliances and has a wide range of applications in the field of new energy.
Keywords: capture of acoustic energy;fluid energy;composite transducer;orthogonal experiments;optimization techniques
2024, 50(4):102-108  收稿日期: 2022-09-28;收到修改稿日期: 2022-11-17
基金项目: 国家自然科学基金 ( 51305409)
作者简介: 陈创(1998-),男,山西运城市人,硕士研究生,专业方向为振动与噪声控制研究。
参考文献
[1] 陈琦, 李红伟, 周海林. 考虑风电消纳的电-热综合能源系统经济运行研究[J]. 中国测试, 2022, 48(1): 116-121.
CHEN Q, LI H W, ZHOU H L. Study on economic operation of electricity-heat integrated energy system considering wind power consumption[J]. China Measurement & Test, 2022, 48(1): 116-121.
[2] 孙琳. 基于耦合型Helmholtz谐振腔的声电换能系统的研究[D]. 西安: 陕西师范大学, 2021.
[3] 李志斌. 噪声发电关键技术研究[D]. 成都: 西南石油大学, 2018.
[4] 魏娴, 董卫, 吴宵军, 等. 声能发电技术发展概况[J]. 大众科技, 2009(12): 101-103.
[5] 王晓辉, 王强, 袁明. 基于赫姆霍兹共鸣器的声能回收器研究[J]. 压电与声光, 2018(3): 412-416.
WANG X H, WANG Q, YUAN M. Study on the acoustic energy harvester with Helmholtz resonator[J]. Piezoelectrics & Acoustooptics, 2018(3): 412-416.
[6] 吕海峰, 余瀚海, 叶俊杰, 等. 声电换能超材料设计与性能[J]. 航空动力学报, 2022, 37(1): 87-94.
LV H F, YU H H, YE J J, et al. Design and performance of metamaterials for acoustic-electric energy conversion[J]. Journal of Aerospace Power, 2022, 37(1): 87-94.
[7] 刘子牛. 局域共振型压电超材料薄板振动能量俘获特性理论与实验研究[D]. 长沙: 国防科技大学, 2017.
LIU Z N. Theoretical and experimental studies on vibration energy harvesting of piezoelectric metamaterial plate with local resonances[D]. Changsha: National University of Defense Technology, 2017.
[8] LI T R, WANG Z M, XIAO H J, et al. Dual-band piezoelectric acoustic energy harvesting by structural and local resonances of Helmholtz metamaterial [J]. Nano Energy, 2021, 90(A Pt.1): ARTN 106523.
[9] 宋科杰. 基于磁流变液的亥姆霍兹共振腔周期结构吸声特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
SONG K J. Research on the acoustic absorption characteristic of Helmholtz resonator periodic structure based on MRF[D]. Harbin: Harbin Engineering University,  2019.
[10] 杨东. 通过颈部材料优化亥姆霍兹共振器的理论和实验研究[D]. 北京: 清华大学, 2013.
YANG D. Theoretical and experimental study of Helmholtz resonator optimization with neck materials[D]. Beijing: Tsinghua University, 2013.
[11] 马智宇, 吕海峰, 叶俊杰, 等. 亥姆霍兹共振式声电换能系统研究[J]. 振动与冲击, 2022, 41(10): 231-237.
MA Z Y, LÜ H F, YE J J, et al. Acousto-electric transducer structures based on the Helmholtz resonance effect[J]. Journal of Vibration and Shock, 2022, 41(10): 231-237.
[12] 韦宣, 王志浩, 李思瑶, 等. 基于LabVIEW的多通道转速传感器校准装置研制[J]. 中国测试, 2021, 47(7): 125-129.
WEI X, WANG Z H, LI S Y, et al. Development of multi-channel speed sensor calibration device based on LabVIEW[J]. China Measurement & Test, 2021, 47(7): 125-129.
[13] 汪成龙, 黄余凤, 何宣, 等. 基于LabVIEW的应变片数据采集系统[J]. 电子测量技术, 2018, 41(14): 97-101.
WANG C L, HUANG Y F, HE X, et al. Data acquisition system of strain gauge based on LabVIEW[J]. Electronic Measurement Technology, 2018, 41(14): 97-101.
[14] 张智娟, 倪超, 侯立群. 悬臂梁双晶压电片不同连接方式发电性能[J]. 电子器件, 2018(4): 893-897.
ZHANG Z J, NI C, HOU L Q. Power generation performance of cantilever beam bimorph in different connection modes[J]. Chinese Journal of Electron Devices, 2018(4): 893-897.
[15] 吴熊伟, 方婷. 基于并联负载发夹型谐振器的四阶带通滤波器[J]. 电子测量技术, 2022, 45(12): 80-84.
WU X W, FANG T. Fourth-order bandpass filter based on parallel load hairpin resonator[J]. Electronic Measurement Technology, 2022, 45(12): 80-84.